
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. X, NO. X, JUNE 2010 1

Architectural Frameworks for Security and Reliability of
MPSoCs

Krutartha Patel,Member, IEEE,Sri Parameswaran,Member, IEEE,and Roshan Ragel,Member, IEEE

Abstract—Multiprocessor System on Chip (MPSoC) architectures are
increasingly used in modern embedded systems. MPSoCs are used for
confidential and critical applications and hence need strong security and
reliability features.

Software attacks exploit vulnerabilities in the software on MPSoCs. In
this paper we propose two MPSoC architectural frameworks, tCUFFS
and iCUFFS, for an Application Specific Instruction set Processor (ASIP)
design. Both tCUFFS and iCUFFS employ a dedicated security processor
for detecting software attacks.

iCUFFS relies on the exact number of instructions in the basic block to
determine an attack and tCUFFS relies on time-frame based measures.
In addition to software attacks, reliability concerns of bit flip errors in the
control flow instructions (CFIs) are also addressed. Additional method
is proposed to the iCUFFS framework to ensure reliable inter-processor
communication.

The results for the implementation on Xtensa processor fromTensilica
showed, worst case runtime penalty of 38% for tCUFFS and 44%
for iCUFFS, and worst case area overhead of 33% for tCUFFS and
40% for iCUFFS. The existing iCUFFS framework was able to detect
approximately 70% of bit flip errors in the CFIs. The modified i CUFFS
framework proposed for reliable inter-processor communication was at
most 4% slower than the existing iCUFFS framework.

Index Terms—Architecture, Code Injection, Reliability, Instruction
Count, MPSoC, Tensilica

I. I NTRODUCTION

In systems design, Multiprocessor System on Chips (MPSoCs)are
emerging as the pre-eminent design solution to increasing demands
in functional requirements, low power needs, and programmability
[1]. The multimedia devices such as portable music players and
cell-phones already deploy MPSoCs to exploit data processing par-
allelism and provide multiple functionalities [2, 3]. Withincreased
functionalities the complexity of the design increases, and therefore
the susceptibility of the system to attacks from adversaries. The
small form factor for aesthetics of the devices and deeper pipelines
to increase clock frequency for faster throughput have alsobeen
responsible for reliability errors [4].

Embedded systems designers rarely include security in their design
objectives. The short design turnaround times, due to competitive
pressure of getting a system out in the market, is often soaked up
by getting the functionality, performance and energy requirements
correct [5]. Weaknesses in system implementation inevitably remain
and are often exploited by the attackers in the form of either
physical, software or side-channel attacks. Software attacks that
exploit vulnerabilities in software code or weaknesses in the system
design are the most common type of attacks [6]. A reprieve from
an attack still does not guarantee correct execution of the software
because there could be reliability errors. Reliability errors may further
hinder correct execution of the program due to, for example,bit flips
errors [7].

Recent literature suggests that newer security threats targeting
portable electronics like mobile phones and music players may pose

K. Patel and S. Parameswaran are with the School of Computer
Science and Engineering, University of New South Wales (UNSW),
Sydney, NSW 2052 AUSTRALIA e-mail: (kpatel45@gmail.com, sride-
van@cse.unsw.edu.au). R. Ragel is with the University of Peradeniya, SRI
LANKA e-mail: (roshanr@ce.pdn.ac.lk)

Manuscript received August xx, 2009; revised XXXX xx, 2009.

significant risks [8, 9]. Given that such devices already employ
MPSoC architectures, it is imperative that security is considered
at design time rather than be employed as a reactive measure.
Incorporating security in the design definitely increases overheads,
but given the ability of attacks to cause fraud, disrupt activity or
threaten the confidentiality of data, the overheads are worth the cost
[6, 10].

Software attacks in systems usually aim to execute malicious code
that is either already present in the system or is injected. Stack and
heap based buffer overflows are the most common type of software
attacks [11]. The buffer overflow vulnerabilities in application pro-
grams have been exploited since 1988 [12] and still continueto be
exploited. On average nearly 11% of the vulnerabilities reported by
the US-CERT vulnerability reports over the last three yearspertain
to buffer overflow attacks. Figure 1 shows the percentage of buffer
overflow attacks in each month of 2006, 2007 and 2008.

9

12

15

18

B
u

ff
e

r
 O

v
e

r
fl

o
w

 %

2006 2007 2008

0

3

6

9

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

B
u

ff
e

r
 O

v
e

r
fl

o
w

 %

Months

Fig. 1. US-CERT reported buffer overflow vulnerabilities

Embedded devices are moving towards miniaturization to achieve
a small form factor [2, 3]. The improvement in nanometer technology
is helping to achieve miniaturization. However, along withthese
advancements, there are several challenges brought about in terms
of device reliability. The work in this paper targetsSoft Errors,
which normally arise from Single Event Upsets (SEUs). SEU isa
change of state that can occur when ionizing radiation strikes a micro-
electronic device like a microprocessor, semiconductor memory or
power transistors [13]. An SEU can result in a signal or datumbeing
garbled or wrong.

Soft errors are a type of a transient fault that occur due to random
events. Researchers have predicted an increase in soft errors due to
advances in low power and low voltage technologies and increased
clock frequencies [14, 15]. The reduced voltage level of thecurrent
microprocessors make them susceptible to corruption. For example,
if small voltage levels with a small difference are used to represent
bits 0 and 1, then exposure to ionizing radiation may easily alter
the voltages and hence the bits [16]. Decreasing voltages and the
miniaturization of devices has consequently brought aboutan increase
in soft-error-rates (SERs) [17].

A. Paper Overview

In this paper, we draw a comparison between two architectural
framework for detection of software attacks. One of the frameworks
(iCUFFS) is based on ensuring that the correct number of instructions

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. X, NO. X, JUNE 2010

are executed between “check-points” and the other (tCUFFS)is based
on ensuring that the number of clock cycles between two checkpoints
is within some pre-analyzed limits. In addition both tCUFFSand
iCUFFS frameworks perform control flow checks of the program
execution that help detect both security and reliability errors. We
design an MPSoC with a dedicated security processor called the
MONITOR. We tackle the issue of adding security to MPSoC systems
at the processor design level because the overheads are lower when
compared to the overheads incurred when addressing security at the
software level [18, 19].

Each basic block in the application processors of the MPSoC is
instrumented with one or two check-points. These check-points rep-
resent a special instruction that reports to the MONITOR at runtime.
For the tCUFFS framework, the special instruction reports the cycle
count time and for the iCUFFS framework, the special instruction
reports the instruction count. Static analysis on the program is
performed at compile time to extract the control flow of the program.
For the tCUFFS approach the minimum and maximum execution
time between check-points is determined by simulation analysis and
for the iCUFFS approach the number of instructions between the
check-points are determined using static analysis. For thetCUFFS
approach, the control flow, and the minimum and maximum execution
times are stored inside the hardware tables. For the iCUFFS approach,
the control flow, and the number of instructions are recordedinside
hardware tables of the MONITOR.

At runtime, the application processors report to the MONITOR
using the special instructions as to which basic block they are
executing and the value of the processor’s Cycle Count (CC) register
(for tCUFFS) or the Instruction Counter (IC) register (for iCUFFS).
The MONITOR uses the communicated information to check that
the control flow is correct and that the number of clock cycles
or instructions between two check-points is in accordance with the
information stored in its tables. However, if the MONITOR finds that
the control flow is incorrect or that the number of clock cycles or
instructions between two check-points mismatch with the value in its
hardware tables, it sends an interrupt to all the processorsto abort
execution.

One of the novel contributions of the iCUFFS framework is the
“active” MONITOR processor. By “active” we mean that it checks
the value of the IC register of the application processors rather
than just relying on only the information communicated to itfrom
the application processors. By reading the value from the IC, the
MONITOR determines whether or not an application processorhas
missed reporting at a check-point. If the MONITOR finds that a
check-point has been passed through without reporting, an attack is
inferred and the application processors’ execution on the MPSoC
is interrupted. Therefore the framework allows detection of attacks
even when the application processors do not communicate with the
MONITOR.

The iCUFFS framework proposed in this paper, is also applied
to test for reliability errors in the control flow instructions of the
application processors. Moreover, a checksum based variation of
the iCUFFS framework is also proposed for reliable inter-processor
communication on MPSoCs.

The frameworks tCUFFS and iCUFFS, have differing strengths
and weaknesses. This allows one framework to be more suitable to a
designer’s requirements than the other. The tCUFFS framework has
a lower code size and therefore performance overhead compared to
the iCUFFS framework. However, iCUFFS has lesser area overhead
compared to tCUFFS, therefore iCUFFS is more suitable to an
MPSoC design with a tighter area constraint.

The remainder of the paper is organized as follows. Related Work
is presented in Section II. The motivation, problem statement and

assumptions of our work are in Section III. The architectural design
for tCUFFS and iCUFFS is shown and contrasted in Section IV.
Section V and Section VI explain as well as differentiate the
software and hardware design flows respectively for both ourdesigns.
Section VII presents scenarios of how our two designs will protect
an MPSoC against attacks. Experimental results of both the designs
are presented in Section VIII. Section IX shows the use of iCUFFS
framework for reliability analysis. Discussion and conclusions are
presented in Section X and Section XI respectively.

II. RELATED WORK

The countermeasures to software attacks can be broadly classified
into either software based or architectural (hardware) based. Software
based countermeasures consist of either static or dynamic techniques.
Static analysis tools help in removing possible vulnerabilities in the
code at compile time. Various static analysis techniques have been
proposed in the literature [20–24]. Dynamic analysis techniques aim
to detect errors or attacks at runtime. A well-known dynamicanalysis
tool CCured uses both static analysis and efficient runtime checks to
ensure that the pointers are used safely in C programs [18].

Hardware techniques for detecting attacks usually use customized
hardware blocks for runtime checks. McGregor et al. proposed a
special return address stack (SRAS) [25] for protecting against buffer
overflow attacks while Arora et al. [26] proposed a hardware monitor
that uses the trace of the executing instructions and program addresses
for detecting common software and physical attacks. Milenkovic et al.
[27] proposed a signature verification unit that checks the instructions
that are fetched from the memory. Ragel et al. [28] proposed abasic
block validation scheme by modifying the processor’s microinstruc-
tions. Nakka et al. [29] proposed a processor pipeline modification
framework for detecting a process crash or hang. Wang et al. [30]
proposed checking the instruction counter register at the function
level for detecting incorrect execution paths in programs.

Static analysis techniques do not capture all the vulnerabilities in
the code and often raise a number of false positives. Some, like
the Stack Guard [20], aim to solve specific problems like the buffer
overflow attacks and may not work for other types of software attacks.
Dynamic code analysis techniques often incur high runtime overheads
due to extra processing at runtime. For example, CCured [18]incurs
performance overhead of up to 150%.

A majority of the proposed hardware based methods need sig-
nificant architectural modifications which is a major limitation for
commercial and extensible processors like Tensilica’s Xtensa LX2.
Xtensa LX2 provides a base processor implementation which can
be extended using custom instructions defined using TIE (Tensilica
Instruction Extension). Furthermore, the hardware description of the
base processor is unavailable, which restricts major modifications to
the processor.

The SRAS [25] and the hardware monitor [26] are not scalable
for commercial processors like Xtensa LX2 due to unavailability
of a special stack required for SRAS and access to the executed
instructions (at runtime) required by the hardware monitor. Access
to the instruction register (IR) is also unavailable in Xtensa LX2 and
hence signature verification [27] is not possible. The microinstruc-
tions modification [28] and the pipeline modification [29] are also not
possible due to the unavailability of the base processor’s hardware
description. The approach proposed by Wang et al. [30] needsvarious
training data sets to build the instruction count values forprogram
path patterns. New program paths encountered at runtime which are
not in the training set result in false positives.

Therefore the existing single processor software and hardware
solutions discussed above are not quite scalable or need significant

PATEL et al.: ARCHITECTURAL FRAMEWORKS FOR SECURITY AND RELIABILITY OFMPSOCS 3

architectural modifications which is unrealizable for extensible com-
mercial processors like Xtensa LX2.

Two approaches, a software solution [19] and a hardware-based
solution [31] have been previously proposed for detecting software
attacks in the multiprocessor domain.

Our work differs from the previous work for detecting software
attacks on an MPSoC architecture in the following ways. The tCUFFS
uses only one special instruction per basic block as opposedto two
special instructions used by [19, 31]. Therefore the code overhead in
tCUFFS is half compared to [19] and [31]. Moreover tCUFFS also
checks every single line of program code compared to [19, 31]. The
code overhead in iCUFFS will always be less than or equal to the code
overhead in [19] and [31] because unlike two special instructions per
basic block in [19] and [31], iCUFFS uses either one or two special
instructions per basic block.

The iCUFFS framework uses thenumber of executed instruc-
tions compared to the use ofexecution time in clock cylesin [19, 31]
to verify correct execution between two check-points in an application
program. The iCUFFS framework therefore knows theexact number
of instructions that must be executed from one check-point to the
next compared to the time reliant methodology in [19, 31], which
employs a range of execution times.

The approaches in [19, 31] proposed a dedicated processor for
security which was “passive”; i.e., the security processorwould
only perform timing or control flow checks when the application
processors communicated. In contrast, our iCUFFS framework pro-
poses an “active” processor that probes all the applicationprocessors
on the MPSoC by regularly reading their IC for security checks.
Hence iCUFFS even detects attacks that can hijack the processor for
executing malicious code and never communicate with the security
processor whereas neither of the approaches proposed in [19, 31]
could detect such attacks.

The work proposed in [19, 31] requires the program’s execution
trace to find the range of execution times a basic block can take.
Furthermore, the basic blocks that do not fall on the execution path
have their execution times estimated using the processor’sinstruction
set architecture (ISA). The iCUFFS framework only needs to know
the exact number of instructions in each basic block which is
available by static analysis of the assembly code and hence iCUFFS
neither needs any execution trace analysis nor does it need to resort
to estimation.

Both the tCUFFS and iCUFFS frameworks we propose, can be
used to detect soft errors in the control flow instructions (CFIs).
Additionally, we propose for the first time, a modified iCUFFS
framework to ensure reliable inter-processor communication for an
MPSoC framework.

A. Reliability

The advent of advanced fabrication technologies provides faster
and powerful functionality but at the same time brings aboutsignifi-
cant reliability concerns [32, 33]. We targetSoft Errors, also known
as SEUs (Single Event Upsets) that result in a signal or datumbeing
garbled or wrong. An explanation of how the soft errors may happen
is detailed below.

Transient faults are one of the reliability concerns and a study
by Siewiorek et al. in [34, 35] revealed that more than 90% of the
system faults are caused by transient faults. Transient faults occur
due to many reasons that include electromagnetic interference, power
fluctuations, interconnect noise and soft errors. Soft errors are a major
concern due to technological advances like deep pipelines,device
scaling, lower power consumption and supply voltage [4, 15,36–
39].

Some reliable designs to protect against fault tolerances and
Soft Errors, proposed in the literature [40–42], rely on aggressive
redundancies. This category of techniques is normally referred to as
Modular Redundancytechniques. Reis et al. rely on duplications of
some important registers like the stack pointer and a flag register.
Hopkins et al. provide a Fault Tolerant Multiprocessor (FTMP)
architecture for aerospace applications [41]. In the FTMP approach
by Hopkins et al., the information is processed and transmitted in
triplicates so that errors can be corrected. Avizienis usesa multiple
computation approach (byN -fold where N ≥ 2) that performs
computations in three domains: time(repetition), space(hardware) and
information (software).

The work proposed by Bagchi et al. proposes a preemptive
control based signature checking (PECOS) mechanism for single
processors [43]. PECOS employs a software based methodology that
uses embedded assertions in the assembly code, which are triggered
at runtime [43].

The techniques proposed by Ragel et al. [7] involve architectural
modification for checking control flow errors. The techniqueinvolves
duplicating the control flow instruction fetch, then performing hard-
ware checks to detect the bit flips in the instruction memory.

Ramamurthy et al. propose a watchdog processor based concurrent
error detection mechanism and error recovery [44]. The approach
uses signature analysis and is used to detect bit as well as control
flow errors. The watchdog processor presented by Ramamurty et al.
is add-on hardware and hence it would require integration with an
existing processor.

Another watchdog monitoring approach using a watchdog pro-
cessor is suggested by Michel et al. [45]. This allows control flow
checking without the need to modify the program. The watchdog
processor has two tasks. The first is to compute the signatureof the
executed instruction sequence. The second is the detectionof the
nodes reached by the main processor.

Modular Redundancy techniques are expensive due to the massive
amount of redundancy involved. Generally, Modular Redundancy
techniques are not plausible in embedded systems which havetight
space and speed requirements. The approaches mentioned above [40–
42] face high overheads due to redundancy.

PECOS has a significant code overhead of between 50% 150%.
Additionally, it also has a significant program storage overhead of
greater than 100% in average cases. The program storage overhead
is a result of storing the reference signatures of basic blocks and
checking code [43]. PECOS detects around 87% of control flow
errors.

The approach in Ragel et al. [7] relies on micro-instruction
modification of the instruction set architecture. It also requires
implementation of aShadow PCto overcome the problem of bit
flips or a burst in theprogram counter (PC) register. To implement
a Shadow PCas well as to modify the micro-instructions, a designer
needs access to the hardware implementation of the processor.
Commercial processors like Tensilica do not allow access tothe
hardware implementation of the processor.

The approaches by Ramamurthy et al. and Michel et al. [44, 45]
use a watchdog processor, but they are limited to checking errors in
only one processor. Hence the approaches by Ramamurthy et al. and
Michel et al. [44, 45] can’t be used for MPSoCs.

Both the tCUFFS and iCUFFS frameworks we propose, can be
used to detect soft errors in the control flow instructions (CFIs).
Additionally, a modified iCUFFS framework is proposed to ensure
reliable inter-processor communication.

This paper proposes a framework for incorporating securityand
reliability features on an MPSoC. One of the novel contributions of
this paper to the literature is that it only uses the existingdesign

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. X, NO. X, JUNE 2010

flow of commercial processors for an MPSoC design. There is no
extra hardware added to the commercial processor beyond theminor
hardware extensions that are allowed by the commercial processor.
Therefore, not only do we explore the unknown territory of MPSoCs,
but we also propose a security and reliability solution for MPSoCs.
Previous hardware approaches were on single processors andrelied
heavily on significant hardware modifications. Newer attacks like
side-channel attacks rely on monitoring bus traffic on an MPSoC.
Although, side-channel attacks are beyond the scope of thispaper, we
identify the threat of monitoring bus traffic to reliable communication
on an MPSoC. Therefore, we provide measures to protect the inter-
processor and inter-chip communication by encrypting them.

III. M OTIVATION , PROBLEM STATEMENT & A SSUMPTIONS

Figure 2 shows an example of a stack buffer overflow attack.
Figure 2(a) shows a snippet of vulnerable C code, Figure 2(b)shows
the layout of the stack when functiong is called from functionf.
As part of writing data to the arraybuffer in g, the attacker may
supply malicious code in arraybuf before making a call tog. Passing
a sufficiently higher value thanK (which in this case is 50), in
len, would ensure that the stack overflows and the return address
is overwritten as shown in Figure 2(c). Thus the control flow of
the program is changed to execute malicious code. This change in
behavior disrupts the code integrity and causes fallaciousprogram
behavior.

buffer[0]

buffer[1]

...

buffer[K-1]

local variables g()

saved FP g()

return address g()

arguments

local variables f()

saved FP f()

return address f()

Lower

Addresses

Higher

Addresses

Attacker’s code

...

...

...

...

...

return address g()

arguments

local variables f()

saved FP f()

return address f()

#define K 50
int f()
{
...
g(buf,len);
...
}

int g(void *s, size_t len)
{
char buffer[K];
memcpy(buffer, s, len);
...
}

(a) (b) (c)

Stack

Growth

Stack

Frame

g()

Stack

Frame

f()

Fig. 2. A stack based buffer overflow attack.

As discussed earlier in Section I, the software attacks are the most
common types of attacks. Such attacks do not require any special
equipment or sophisticated techniques, unlike physical attacks or
side-channel attacks. A detailed explanation of common software
attacks (heap attacks, format string vulnerabilities, arcinjection, etc.)
can be found in the literature [11, 46, 47].

Our work targets software attacks on an MPSoC architecture that
aim to subvert the control flow of the user’s application to execute
malicious code. Stack and heap based buffer overflows (code injection
attacks), pointer subterfuge attacks and arc injection attacks are prime
examples of software attacks that are targeted in this work.We
do not target physical attacks, such as damaging the MPSoC by
force or erasure of data/instruction memory through physical access,
to the device. Our work also does not target side-channel attacks
on embedded systems which typically involves the use of power
measurements (or other signals which emanate from the device)
to find crucial information from the application program, such as
encryption keys.

We assume that the system calls are safe and hence need not be
supervised. If needed however, the functions in the system library
can also be easily instrumented using the tCUFFS and iCUFFS
frameworks discussed in this paper. We also assume that a secure
“loader” is used for loading the programs in the processor. The
“loader” is trusted so that it cannot compromise the programcode.

We assume that the programs that execute on each application
processor are fixed at design time and also that the MONITOR

can be completely secured. This is a reasonable assumption given
that MONITOR is a dedicated processor for security and only runs
a loop that executes the customized hardware instructions.This
small number of instructions can be easily placed in a ROM as the
instructions need not change.

The storage tables are built in hardware, keeping in mind the
speed/performance impacts. There may be memory access latencies
involved which reduces the performance, if the tables were not
built in hardware. However, if the problem was done in other
platforms like ASIPMeister (where hardware description ofprocessor
implementation was available unlike Xtensa LX2), a loadable table
may be considered. Such loadable tables would be updated when
software is updated. However, our work hasn’t explored thisoption
of loadable tables yet.

IV. MPSOC ARCHITECTURAL DESIGN

We have implemented the proposed frameworks of tCUFFS and
iCUFFS using the Xtensa LX2 processor from Tensilica Inc. The
Xtensa LX2 processor provides a base core implementation that con-
tains 80 instructions. The base core can be further customized from
Xtensa’s existing resource pool by adding co-processors, multiplier
units, Boolean registers, local memories, etc. It is also possible to
customize the processor by changing features such as the pipeline
length and instruction fetch widths. Besides the customizations from
the existing resource pool, user-defined hardware instructions can be
created using Tensilica Instruction Extension (TIE) language. Xtensa
LX2 also provides implementation for ports and queues whichwe
use in our architectural framework. The Xtensa LX2 processor also
allows defining custom register files and storage tables for constants.

The common MPSoC architecture layout we propose (for both
tCUFFS and iCUFFS) in this paper is shown in Figure 3(a). The
extension to the common architecture layout which is necessary for
iCUFFS is not shown in Figure 3(a), and will be shown later. Inthe
MPSoC layout in Figure 3(a), there areN application processors
and one additional MONITOR processor that supervises theN

application processors. TheN application processors can execute
in any arbitrary fashion. For example, the programs can execute
independently as shown in Figure 3(a) or as a pipeline of processors
communicating amongst themselves.

Queue

FIFO

MONITOR

PM

(b)

FIFO2 FIFON

In
te
rr
u
p
t 2

In
te
rr
u
p
t 1

In
te
rr
u
p
t N

App

Proc 2

App

Proc N

MONITOR

App

Proc 1

FIFO1

(a)

Empty

Pop

Full

Req

Push

Req

App Proc

PN

CC/IC

Fig. 3. (a) An MPSoC system with a MONITOR (b) Communicationsvia
FIFO

On the MPSoC system, one of the key features we employ is
a FIFO queue for inter-processor communication. The FIFO queue
allows communication at runtime between an application processor
and the MONITOR processor. The FIFO shown in Figure 3(b)
ensures that every time an input is received, aCC (from Cycle Count
Register) orIC (from Instruction Count Register) reading is attached
to the input. TheCC is utilized by the tCUFFS approach where as the
IC is utilized by the iCUFFS approach for ensuring correct program
execution. The FIFO queue stalls when attempting to read from an
empty queue and write to a full queue using the Empty and Full
signals shown in Figure 3(b).

The architectural layout for the iCUFFS approach is shown in
Figure 4. It is an extension to the tCUFFS layout shown earlier

PATEL et al.: ARCHITECTURAL FRAMEWORKS FOR SECURITY AND RELIABILITY OFMPSOCS 5

in Figure 3(a). The iCUFFS design is equipped with a hardware
unit called CHK IC that allows the MONITOR to probe all the
application processors to obtain theirIC reading through a shared
memory interface as shown in Figure 4. TheCHK IC allows the
MONITOR to detect an attack even in the case of an application
processor being hijacked by an attacker. The MONITOR’s active
probing of the application processors allows it to foil an attack
even if the attacker prevents any communication from the application
processors using the special FIFO instructions. The methodology is
described in detail as a combination of software and hardware design
flows in the following two sections.

CHK_IC

10111011

01010111

Shared

Memory

Fig. 4. The design of the iCUFFS architectural framework

V. SOFTWARE DESIGN FLOW

The software design flow used by both tCUFFS and iCUFFS is
shown in Figure 5 and discussed in the following two subsections.

A. Software Design Flow - tCUFFS

Firstly, the application program’s source code in C/C++ is compiled
to obtain the source code in assembly. The assembly source code is
then divided into basic blocks (BBs) as shown in Figure 6(a) by the
dotted lines. A BB is defined as a set of sequential instructions that
end in a control flow instruction like abranch, jump , system call
or function call instruction. Once the program is divided into BBs,
static analysis is performed to yield acontrol flow graph of the
program at the BB level which is shown in Figure 6(b).

Source.s Basic Block

Division

Modified

Source.s
Basic Block

Instrumentation

Instrumented

Binary
Simulation

Analysis

Control Flow

Extraction

Assemble &

Link

Software Design Flow - tCUFFS

Source.s Basic Block

Division

Modified

Source.s
Basic Block

Instrumentation

Instrumented

Binary
Instruction

Count Analysis

Control Flow

Extraction

Assemble &

Link

App. Proc.

on MPSoC

Secure

Loading

Software Design Flow - iCUFFS

App. Proc.

on MPSoC

Secure

Loading

Fig. 5. The software design in the proposed framework

Dividing a program into basic blocks allows low level monitoring
of a program running on an application processor in an MPSoC.The
advantage of monitoring a program at the granularity of BB allows
a rapid stop of the system on compromise, and an attack can be
narrowed to a small chunk of instructions. Commercial processors do
not allow access to processor implementation or special registers like
program counter and instruction register, hence monitoring at a lower
granularity than BB is not possible. Monitoring at a function level is
possible (higher granularity than BB), but functions can comprise of
several control flow instructions and it is difficult to isolate the place
of attack inside a function.

L3:

addi.n a12, a10, 1

l32i a11, a1, 172

l32i a10, a1, 168

mull a9, a10, a11

beqz a9, L4

movi.n a11, 1

mov.n a6, a10

mov.n a12, a7

mov.n a13, a6

movi.n a6, a9

call8 fread

L4:

l8ui a8, a10, 0

send6 a8

addi.n a10, a10, 1

xor a7, a7, a8

bne a7, a6, L4

L5:

movi.n a6, 0

xor a5, a4, a3

add a8, a7, a5

l32r a8, .LC0

addi.n a6, a6, 1

bne a6, 50, L5

L3: iCUFFB 6302

addi.n a12, a10, 1

l32i a11, a1, 172

l32i a10, a1, 168

mull a9, a10, a11
beqz a9, L4

iCUFFB 6079

movi.n a11, 1
mov.n a6, a10
mov.n a12, a7
mov.n a13, a6
movi.n a6, a9
iCUFFE 6079

call8 fread

L4: iCUFFB 6522

l8ui a8, a10, 0
send6 a8
addi.n a10, a10, 1
xor a7, a7, a8
bne a7, a6, L4

L5: iCUFFB 6279

mL5:movi.n a6, 0
xor a5, a4, a3
add a8, a7, a5
l32r a8, .LC0

addi.n a6, a6, 1
bne a6, 50, mL5

(a) a code segment (b) CF graph with tCUFFB insn. (c) CF graph with iCUFFB/E insn

L3: tCUFFB 6302

addi.n a12, a10, 1

l32i a11, a1, 172

l32i a10, a1, 168

mull a9, a10, a11
beqz a9, L4

tCUFFB 6079

movi.n a11, 1
mov.n a6, a10
mov.n a12, a7
mov.n a13, a6
movi.n a6, a9
call8 fread

L4: tCUFFB 6522

l8ui a8, a10, 0
send6 a8
addi.n a10, a10, 1
xor a7, a7, a8
bne a7, a6, L4

L5: tCUFFB 6279

mL5:movi.n a6, 0
xor a5, a4, a3
add a8, a7, a5
l32r a8, .LC0
addi.n a6, a6, 1
bne a6, 50, mL5

Fig. 6. Basic block division and control flow extraction

Each processor is assigned a unique processor ID and each BB of
the program in the processor is assigned a unique block ID. Using
the processor ID and the block ID, a special ID calledSID is created
for each BB. We assume that thisSID is encrypted using a distinct
encryption key (based upon physical uncloneable functions(PUF),
proposed in [48], to acquire an encryption key using the physical
properties of integrated circuits in the MPSoCs) at load time by the
secure “loader”. An exact copy of the encryption key is also stored
in hardware as shown in Figure 7 to decrypt theSID at runtime. The
importance of encrypting theSID is further discussed in Section VII.

The BB instrumentation procedure is different for the two frame-
works. For the tCUFFS framework, each BB is instrumented with
only a single special instruction calledtCUFFB as shown in top
three boxes in Figure 6(b). ThetCUFFB instruction is inserted at the
start of each basic block. The number in thetCUFFB instruction is
the encryptedSID. A BB representing a loop where the frequency of
execution can be statically known is instrumented slightlydifferently
by our static analyzer as shown in the last BB of Figure 6(b). An
extra label (this casemL5) is inserted after thetCUFFB instruction
and the target of the branch is changed to this extra labelmL5. This
type of instrumentation allows thetCUFFB instruction to be executed
only once for each execution of the loop.

B. Software Design Flow - iCUFFS

The stages in the software design flow for iCUFFS are identical to
tCUFFS except that tCUFFS uses simulation analysis where iCUFFS
uses instruction count analysis.

For the iCUFFS approach, each BB is instrumented with one or
two special instructions as shown in Figure 6(c). A specialiCUFFB
instruction is always added as the first instruction in each BB.

For a BB that ends in a system call, another instructioniCUFFE is
added before the system call. An example of such a BB is shown in
the second BB box in Figure 6(c). Therefore BBs ending in a system
call contain two special instructions per BB.

The number in theiCUFFB and iCUFFE instruction is the
encryptedSID. The instrumentation for a BB representing a loop
(where the execution frequency can be statically known) is done in
exactly the same manner as described above for tCUFFS. The only
difference being that in the iCUFFS approach, the special instruction
added isiCUFFB instead oftCUFFB.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. X, NO. X, JUNE 2010

C. Control Flow Extraction - tCUFFS and iCUFFS

The static analysis of the instrumented assembly file also yields
a control flow map of the program which is shown using arrows in
Figure 6(b) and (c) for tCUFFS and iCUFFS respectively. Since each
of the BBs are given aSID, the control flow map can be expressed
in terms ofSID. The BBs with an indirect control flow, however may
not be resolved at compile time. Hence simulation trace file analysis
may be required. This analysis is described in the next subsection.

D. Simulation Analysis - tCUFFS

The ‘Simulation Analysis’ stage in the tCUFFS approach extracts
the minimum and maximum execution time for each BB by analyzing
the execution trace after simulation. Using the trace file produced for
each processor, we are able to find the time taken by each instruction
that was executed. Adding up the execution time of each instruction of
a particular basic block, we get the execution time of that basic block.
It is likely that some basic blocks have been executed more than
once and that their execution time has a range of values. The cache
in the architecture also introduces variability in timing depending on
whether the instruction was in the cache or had to be fetched from
the memory.

It may also be possible that the execution path of the programdoes
not include all possible sections of the code. The timing information
for those blocks of code would therefore be unavailable through the
tracefile analysis. It is likely that these sections of the code may not
be used much except in corner cases. Thus another tool that estimates
the time for these blocks is used. This tool estimates how much time
each instruction in the block may take by using the instruction set
simulator’s (ISS’s) general guide. A history of the same operation
instruction can also be looked at in the tracefile to get an estimate
on the min and max time for the instruction.

Once each instruction’s min and max times are estimated in this
unexecuted basic block, we can sum up these estimated valuesand
get the estimated execution time for the basic block. The minimum
and the maximum execution time of all the basic blocks are recorded
and stored in the MONITOR processor for the tCUFFS approach.

The simulation analysis can also be used to resolve indirect
branches in the code. The tracefile shows the control flow transitions
from the BB containing the indirect control flow instruction(CFI)
to other BB. Thus the control flow graphs generated in the previous
subsection can be further reinforced using the analysis of the tracefile.
However, not all the indirect CFIs may have been executed and
therefore not all the indirect CFIs can be resolved through tracefile
analysis. Hence the tCUFFS and iCUFFS approaches have a limita-
tion that an indirect CFI may not be monitored unless, there exists a
set of particular basic blocks that the indirect CFI can havea transition
to.

E. Instruction Count Analysis - iCUFFS

For the iCUFFS approach, the ‘Instruction Count Analysis’ stage
simply refers to gathering information regarding the number of
instructions in each BB, which can be obtained by going through the
instrumented assembly file. Thus the relevant information about the
number of instructions for iCUFFS is stored in the hardware tables
of the MONITOR processor. These tables will be used at runtime by
the MONITOR processor for security checking.

For the iCUFFS approach, Simulation Analysis is only necessary
for processors that need to resolve indirect control flow addresses.
The resolution of indirect control flow addresses is done in the same
way as it is done for tCUFFS as explained in the previous subsection.

F. Assemble, Link and Loading - tCUFFS and iCUFFS

Finally the instrumented application is assembled and the binary is
loaded through a secure “loader” into the application processor of the
MPSoC using a secure key (same random key that is built into the
base architectural configuration as shown in Figure 7). Every basic
architectural configuration as well as the secure loader that goes with
it are built with a different random hardware key.

We also refer to places where special instructionstCUFFB,
iCUFFB and iCUFFE are inserted as “check-points” in this paper.
All the instructions,tCUFFB, iCUFFB and iCUFFE are hardware
instructions that write to a FIFO queue when executed.

VI. H ARDWARE DESIGN FLOW

The hardware design flow for both tCUFFS and iCUFFS is shown
in Figure 7. Examining the tCUFFS approach, it can be seen that we
start with a base processor configuration that is customizedin two
stages to finally obtain either an application processor or aMONITOR
processor. The first stage involves the processor’s customization using
the existing pool of resources labelled from A to F in Figure 7. There
are many other pre-built resources available in the Xtensa toolset,
which the base processor can be customized with [49]. However,
we only show six, labelled from A to F in Figure 7 due to space
limitations.

Customization

using A,B,C,D,E,F

FIFO Queues

Register File

Storage Tables

tVERIFY HW Insn

FIFO Queues

Pipeline

Length

Boolean

Registers

Max Insn

Width

MIN/MAX/

MINU/MAXU

Co-

processors

MUL16/

MUL32

Customization

using A,B,C,D,E,F

Single

App. Proc.

A B C D E F
Existing Resource Pool

Hardware

Design Flow - iCUFFS

MONITOR

Base Proc.

Config.

Customization

using A,B,C,D,E,F

FIFO Queues

Register File

Storage Tables

iVERIFY HW Insn

iCHK HW Insn

FIFO Queues

Customization

using A,B,C

Single

App. Proc.

MONITOR

Hardware

Design Flow - tCUFFS

Base Proc.

Config.

Fig. 7. The hardware design in the proposed framework

A. Hardware Customizations - tCUFFS

For the tCUFFS framework, the MONITOR processor is cus-
tomized the same way as the application processors, i.e., itis
homogenous to the application processors. The second stageof
customization for tCUFFS involves defining custom hardwarein-
structions. The Xtensa LX2 processor allows users to define custom
hardware using TIE language. For the application processorthis
involves just designing a FIFO queue to be able to send trafficto the
MONITOR. For the MONITOR, we define the implementation for the
FIFO queues, a register file, storage tables and some hardware logic in
the form of tVERIFY instruction. The FIFO queues are designed for
communication between application processors and the MONITOR
processor. A custom register file is designed to have fast access to
data for the hardware instructions. The storage tables are used to
store the control flow graphs and minimum and maximum execution
time for each basic block for the programs executing in each of the
application processors. The tVERIFY instruction is used toperform
security checks which are discussed in Section VI-C.

PATEL et al.: ARCHITECTURAL FRAMEWORKS FOR SECURITY AND RELIABILITY OFMPSOCS 7

B. Hardware Customizations - iCUFFS

The hardware design flow for iCUFFS is almost entirely similar to
tCUFFS as described above except for some minor differences. For
the iCUFFS framework, we propose a simple MONITOR processor
which is different to the application processors, customized indepen-
dently by selecting only the features that are needed. For example, as
shown in Figure 7, hardware design flow for iCUFFS, we use only
resources A, B and C for the MONITOR. Also iCUFFS has two
hardware instructions in the form of iCHK and iVERIFY ratherthan
the one in tCUFFS. The design of iCHK and iVERIFY instructions
is further discussed in Section VI-C. Another minor difference in
iCUFFS compared to tCUFFS is that the storage tables are used
for storing the number of instructions rather than the execution time
limits of BBs in the application processor.

C. Runtime Functionality

At runtime, the MONITOR processor in tCUFFS and iCUFFS
performs checks using Algorithm 1 with the exception of one or
two lines. The tCUFFS framework does not use lines 9 and 10
in Algorithm 1 and the iCUFFS framework does not use line 8 in
Algorithm 1.

Algorithm 1 The algorithm employed by the MONITOR for tCUFFS
and iCUFFS

1: Initialize error = 0, done = 0;
2: while ((error == 0) AND (done == 0)) do
3: for j = 1 to N do
4: if (FIFOPj

not EMPTY) then
5: Read and Decrypt FIFOPj

Information
6: end if
7: end for
8: tVERIFY(error, done); // tCUFFS only
9: iVERIFY(error, done); // iCUFFS only

10: iCHK(); // iCUFFS only
11: end while

We haveN identical hardware units representing tVERIFY instruc-
tion for tCUFFS and iVERIFY instruction for iCUFFS for each of the
N application processors on the MPSoC. TheN identical repeated
hardware blocks allow fast computation of theerrorN and doneN

signals. The overallerror signal is computed based on a logicalOR
operation of the individualerrorN signals and thedone signal is
changed to ’1’ when the final processor finishes execution.

1) Runtime Functionality - tCUFFS:As described in Algorithm 1,
all the FIFOs are checked for data. If the data is available in
any of the FIFOs, it is read and decrypted through the hardware
instruction tVERIFY. The tVERIFY is aSingle Instruction Multiple
Data (SIMD) instructions, which updateserror to 1 if any of the
processors fail any of the checks and also updatesfinish to 1 if the
application has ended. The tVERIFY instruction performs timing and
control flow checks for the tCUFFS framework as shown in Figure 8.

Y

tCUFFB ### Decrypt

(t > Tmin)? &

(t < Tmax)?

Y

N

N

Finished?

Interrupt

End

Separate

Info. bId,pId

Y

N

pId, bId, t

Control Flow

Correct?

Fig. 8. Flowchart of checks performed by tVERIFY in hardware

The encrypted number in the tCUFFB instruction (communicated
to the MONITOR through FIFO) is decrypted using the hardware
key in the MONITOR. The time (t), processor Id (pId) and the block
Id (bId) information are separated and used to check the validity
of the timing and control flow against the stored informationin the
MONITOR processor. The time information refers to the execution
time of the basic block bId. If the execution time of the basicblock
bId is less than its stored minimum execution time (Tmin) or greater
than its stored maximum execution time (Tmax), the appropriate
application processors referred to by pId are interrupted and a timing
error tCUFFS TIE generated. The control flow check ensures the
transition to the current basic block from the previous basic block is
valid and if it isn’t, a control flow errortCUFFS CFE is generated.
The system exits once the final processor has finished execution.

2) Runtime Functionality - iCUFFS:The iVERIFY instruction
like the tVERIFY instruction is a SIMD hardware instruction, which
updates theerror to 1 if any of the processors fail any of the
checks and also updatesfinish to 1 if the application has ended.
The iVERIFY instruction performs checks for instruction count and
control flow generating errorsiCUFFS ICE and iCUFFS CFE
respectively as shown in Figure 9.

Y

iCUFFB/E ### Decrypt

Insn Count

match?

Y

N

N

Finished?

Interrupt

End

Separate

Info. bId,pId

Y

N

pId, bId,

insnCount

Control Flow

Correct?

Fig. 9. Flowchart of checks performed by iVERIFY in hardware

The encrypted information in the iCUFFB instruction is decrypted
using the hardware key in the MONITOR. The decryption results in
the instruction count (insnCount), processor Id (pId) and the block
Id (bId) information. The pId information is used to correctly index
the hardware tables of the appropriate application processor. The
insnCount information is used to check whether the instruction count
reported by the iCUFFB/E instruction matches the record in the
hardware table. The bId information is used to check the control flow
of the application processor pId by matching against the hardware
table. The mismatch in the insnCount generates aniCUFFS ICE
error. The violation in the control flow generates aniCUFFS CFE
error. Once the final processor has finished execution, the MONITOR
processor ceases execution.

The iCUFFS framework employs another hardware instruction
iCHK which makes the MONITOR processor “active”. The internal
architecture of iCHK hardware instruction is shown in Figure 10,
which checks for timeout error of application processors. The iCHK
instruction generates a time out error signaliCUFFS TOE if any of
the application processors missed reporting any of the check-points.

The iCHK hardware block sends out a signalSto all the application
processors and obtains the value of the application processor’s IC .
The iCHK hardware is also aware of the last receivedIC which is
available inprevIC and the last received BB information, available
in prevBB. The prevBB is used to index into the instruction count
hardware table and the table entry is compared to the difference of
IC and prevIC . If the difference is greater than the table entry, a
iCUFFS TOE=1 is generated indicating that the application proces-
sor has likely missed out reporting on a check-point due to anattack,
otherwiseiCUFFS TOE=0 is generated.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. X, NO. X, JUNE 2010

Signal

CHK_IC

TOEN
1011

0101

HW Table

Insn Count

prevBBN

prevICN

ICN

tab_ICN

SignalN

(ICN – prevICN) >

tab_ICN

IC

Fig. 10. The hardware logic for the iCHK instruction

VII. SYSTEM PROTECTIONMECHANISMS

In this section, we discuss how the tCUFFS and the iCUFFS
architectural frameworks can be used for the protection of an MPSoC
system. Errors are indicated usingtCUFFS TIE (Timing Error),
tCUFFS CFE (Control Flow Error) for tCUFFS andiCUFFS CFE
(Control Flow Error), iCUFFS ICE (Instruction Count Error) and
iCUFFS TOE (Time Out Error) for iCUFFS. If any of these are
active, the execution of all the application processors on the MPSoC
is aborted. The MPSoC security is said to be compromised if any of
the application processors is under attack.

The tCUFFS and the iCUFFS framework monitor for security at
the BB level. If we can ensure that each BB execution was correct
in terms of the properties for it is being checked, we can extrapolate
that the entire program execution was correct for those properties.
We classify the BBs into three types: (1) ending in a system call; (2)
ending in a CFI; and (3) ending in neither a system call nor a CFI.
We show in this section that tCUFFS and iCUFFS are able to detect
the attacks for each of the three types of BBs and hence securethe
application.

We now discuss how the tCUFFS and the iCUFFS frameworks
would respond to attacks. Figure 11(a) and Figure 12(a) showan
example of a code segment in tCUFFS and iCUFFS respectively.
Figure 11(b) and Figure 12(b) show an attack where the attack
code does not communicate to the MONITOR and Figure 11(c) and
Figure 12(c) show an attack where the attack code does communicate
to MONITOR usingtCUFFB and iCUFFB instructions respectively.

(a) original code segment

attack Insn

attack Insn

...

attack Insn

attack Insn

L3: tCUFFB 6302

addi.n a11, a10, 1

...

mull a9, a10, a11

beqz a5, L4

tCUFFB 6079

movi.n a11, 1

...

movi.n a6, 0

call8 fread

L4: tCUFFB 6522

l8ui a8, a10, 0

...

xor a7, a7, a8

bne a5, a6, L4

tCUFFB ####

attack Insn

...

attack Insn

attack Insn

(b) Possible Attack 1 (c) Possible Attack 2

BB type (1)

BB type (2)

Fig. 11. Possible attacks on BBs in tCUFFS

Consider a scenario when BBs of type (1) in Figures 11(a) and
12(a) are attacked by attack code shown in Figures 11(b) and 12(b)
respectively. The attack would only be detected in tCUFFS causing
a tCUFFS TIE error when the next communication to MONITOR
takes place. However, for iCUFFS, there is aiCUFFS TOE because
the BB withSID 6522 was supposed to follow the BB withSID 6079.
Since the attack code does not communicate to the MONITOR, the

(a) original code segment

attack Insn

attack Insn

...

attack Insn

attack Insn

L3: iCUFFB 6302

addi.n a11, a10, 1

...

mull a9, a10, a11

beqz a5, L4

iCUFFB 6079

movi.n a11, 1

...

movi.n a6, 0

iCUFFE 6079

call8 fread

L4: iCUFFB 6522

l8ui a8, a10, 0

...

xor a7, a7, a8

bne a5, a6, L4

iCUFFB ####

attack Insn

...

attack Insn

attack Insn

(b) Possible Attack 1 (c) Possible Attack 2

BB type (1)

BB type (2)

Fig. 12. Possible attacks on BBs in iCUFFS

MONITOR detects through the iCHK unit that a “check-point” was
missed. Similar result would be achieved for BBs of type (2) in
Figures 11(a) and 12(a), when attacked with attack code shown in
Figures 11(b) and 12(b) respectively.

Now we consider the type of attack shown in Figures 11(c) and
12(c) on BBs of types (1) and (2) in Figures 11(a) and 12(a), where
the attack code does communicate to the MONITOR. We can see that
the attack block contains the correcttCUFFBandiCUFFB instruction
types to be able to attack the basic blocks withSID 6079 and 6522
in Figures 11(a) and 12(a) respectively. However, because the SID
number is encrypted, the MONITOR will cause atCUFFS CFE for
tCUFFS andiCUFFS CFE for iCUFFS when theSID is decrypted
to an unknown value that will cause the control flow check to fail.

When a BB of type 3 faces the attack scenarios mentioned above,
it would behave similarly to that shown by a BB of type 2. Both type
2 and type 3 BBs have only onetCUFFB or iCUFFB instruction per
BB, which is the first instruction in that BB.

In an MPSoC architecture, there is often inter-processor commu-
nication because of an application executing on multiple processors.
An encryptedSID, comprising of a processor ID and a basic block ID
was discussed earlier in Section V. Encryption of SID is important
to prevent information leakage through bus monitoring (oneof the
types of side-channel attacks) during inter-processor communication.
Using bus monitoring, an attacker may be able to reconstructthe
control flow of the program on different application processors. With
an encrypted SID, the attacker would not be able to decipher the
processor number and the basic block number and hence reconstruct
the control flow. Moreover, the same bus used by all the application
processors to communicate to the MONITOR further complicates
deciphering the processor number and basic block number from the
encrypted SID obtained from bus monitoring.

VIII. E XPERIMENTAL RESULTS

We tested the tCUFFS and the iCUFFS architectural frameworks
using Xtensa LX2 processor from Tensilica Inc. The framework
was tested using three multiprocessor multimedia benchmarks (JPEG
Encoder, MP3 and JPEG Decoder) of varying complexities. These
multiprocessor benchmarks were obtained from the authors of [50]
and [51] who had previously partitioned these benchmarks using
Tensilica toolset. The details of the processor cores designed for
testing each of the three benchmarks is shown in Table I.

The first column of Table I shows the benchmark that was tested.
The second column states the type of processor, either Application
(App) or MONITOR (MON). The third column states the number
of application processors or MONITOR processors in the MPSoC
system. The fourth column lists the type of technology used for
each of the processor cores. The fifth and the sixth columns state
the individual core speed for tCUFFS and iCUFFS respectively. The

PATEL et al.: ARCHITECTURAL FRAMEWORKS FOR SECURITY AND RELIABILITY OFMPSOCS 9

TABLE I
PROCESSOR CORE CONFIGURATIONS FORMPSOCS

Bench-
mark

Proc.
type

No. of
Proc.

Tech- Speed Power
nology (MHz) (mW)
(nm) tCUFFS iCUFFS tCUFFS iCUFFS

JPEG
Enc.

App. 6 130 303 303 333.06 335.58
MON 1 130 303 332 55.51 40.52

MP3
App. 5 90 533 533 673.05 678.35
MON 1 90 533 585 134.61 93.34

JPEG
Dec.

App. 5 90 533 533 632.25 637.55
MON 1 90 533 585 126.45 93.34

seventh and the eight columns outline the power statistics for tCUFFS
and iCUFFS respectively. In the case of application type processors
the power figures are a collective statistic for all the application
processors on the MPSoC, whereas for the MONITOR processor the
power refers only to the one MONITOR on the core.

We investigated two types of designs for the MONITOR in tCUFFS
and iCUFFS frameworks. In the tCUFFS framework, we used a
MONITOR that was similar to the application processors on the
MPSoC, where as in iCUFFS framework we used a MONITOR
that was heterogeneous to the application processors by using only
the minimal required features. Table I shows that this savespower
because the total power for iCUFFS for all the benchmarks is lower
than the total power for tCUFFS. For example the JPEG Encoder
benchmark, total power consumption of MPSoC, for tCUFFS is
388.57mW and for iCUFFS is 376.1mW . The iCUFFS framework
also has a higher frequency for the MONITOR compared to the
tCUFFS framework and this is again a result of using a simpler
MONITOR. This would allow the FIFO communication from the
application processors to be processed at a faster rate, as long as the
MONITOR processor was clocked separately.

A. Performance Impact

The performance overheads for tCUFFS and iCUFFS resulting
from the tests on the multimedia benchmarks are shown in Figure 13.
The JPEG encoder benchmark has performance overheads of less
than 1% whereas the MP3 and the JPEG decoder which are more
complicated benchmarks have higher performance overheads.

Figure 13 clearly shows that the performance overheads resulting
from the iCUFFS framework are slightly higher than the tCUFFS
(which has the least performance overhead among previouslypro-
posed methods in [19] and [31] for detecting software attacks
on MPSoCs). However, for slightly higher performance overheads,
iCUFFS provides a security framework that checks every single line
of code and has an “active” MONITOR to be able to detect a
greater range of attacks than the tCUFFS framework as described
in Section VII.

B. Area and Code Size Overheads

The code and area overheads incurred in the MPSoC system due to
the tCUFFS and iCUFFS frameworks are shown in Figure 14(a) and
Figure 14(b) respectively. iCUFFS has a higher percentage of code
overhead compared to tCUFFS (which again has the least amount of
code overhead among previously proposed methods in [19] and[31]
for detecting software attacks on MPSoCs) as shown in Figure14(a).
The higher code overhead in iCUFFS is a result of employing two
special instructions per basic block when a basic block endsin a
system call compared to just one in tCUFFS.

The iCUFFS framework, however, has a lower percentage of area
overhead than tCUFFS as shown in Figure 14(b). A lower percentage

��

��

��

��

�
��
�
�
�
�
�
	
�
�

�
��
�

�
��

�
�

���		
 ���		

�

��

��

��

��

�
������� �
� �
�������

�
��
�
�
�
�
�
	
�
�

�
��
�

�
��

�
�

��������	

���		
 ���		

(a) Code Size

��

��

��

��

�
��
�
�
�
�
�
	
�
�

�
��
�
�
�

���		
 ���		

�

��

��

��

��

�
������� �
� �
�������

�
��
�
�
�
�
�
	
�
�

�
��
�
�
�

��������	

���		
 ���		

(b) Area

Fig. 14. Percentage Inc. in Code & Area for tCUFFS & iCUFFS

of area is achieved mainly because iCUFFS employs a simpler MON-
ITOR processor with only the required features compared to tCUFFS.
It should be noted that we have not accounted for the communication
between the application processors and the MONITOR in our area
estimation. It is difficult to estimate the area for the communication
channels at this high level of abstraction without resorting to place
and route methods.

IX. RELIABILITY ANALYSIS

According to the studies on reliability by Schutte et al. in [52]
and Ohlsson et al. in [53], between 33% and 77% of all transient
faults (soft errors) correspond to CFEs which may be caused due to
transient bit flips. The iCUFFS framework was tested for detecting
soft errors in the CFIs. Section IX-A details the analysis method and
results achieved by the iCUFFS framework. A modified versionof
the iCUFFS framework is proposed in Section IX-B to ensure reliable
inter-processor communication.

A. Fault Injection Analysis

We tested the tCUFFS and iCUFFS frameworks for detecting bit
flip errors in the CFIs. We test for bit flips in the CFIs that mayoccur
in the instruction memory of an MPSoC system. Every processor on
an MPSoC for a particular benchmark was injected with a set number
of faults. The faults in the form of bit flips were injected in the CFIs
and it was noted whether the bit flip was detected or not by the
MONITOR processor.

Table II shows the analysis of the fault injection tests on each
of the three multimedia benchmarks. The first column shows the
benchmark and the processor. The second, third and fourth columns
show respectively the number of function/library call, branch and
jump instructions selected for injecting faults. The fifth column shows
the total number of control flow instructions that the faultswere
injected into. The sixth column shows how many of the faults in
the fifth column were detected and the seventh column shows the
percentage of faults detected.

Each benchmark was injected with 100 faults or errors. For
example, in the JPEG Encoder benchmark, four processors were
injected with 17 faults and two processors were injected with 16

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. X, NO. X, JUNE 2010

��� ���� ��� ���� ����

��

���	

�
��

��	
���
 ���� ���� ��
	 ��
�

����

�	

���	

���

�

�

�

��

��

��

��

�
��
�
�
�
�
�
	
�
�

�
��
�
�

�

�
��
�
�
�
�
�
�
� ��	

� ��	

�

��� ���� ��� ���� ����

��

���	

�
��

��	
���
 ���� ���� ��
	 ��
�

����

�	

���	

���

�

�

�

��

��

��

��

�
������ ��� �����������
 ��
��� ������ ����� ������ �����
� ���

�
��
�
�
�
�
�
	
�
�

�
��
�
�

�

�
��
�
�
�
�
�
�
�

��������	

��	

� ��	

�

���������	
� ������
��	
�
��

Fig. 13. Performance Overheads for tCUFFS and iCUFFS

faults to get a total of 100 faults. In each of the benchmarks,the
CFI and the bit in the CFI, where the fault is to be injected was
selected at random. Each processork has a certain number of CFIs
represented byCFIk. So random numbers were generated between
1 andCFIk for eachk. These numbers were used to identify the
CFI in which the fault was to be injected. To determine, whichbit
of the instruction was to be corrupted, again a random numberwas
generated between 1 and 16 or 1 and 24 depending on whether the
instruction was 16 or 24 bits long.

TABLE II
RESULTS FROMFAULT INJECTION FOR ICUFFSON BENCHMARKS

Processor Func/ Bra- Jump To- Dete- % Det-
Lib Call nch tal cted ected

JPEG Enc.
P1:Read File 9 7 1 17 11 64.7
P2:RGB Convert 0 14 3 17 16 94.1
P3:DCT2 2 15 0 17 17 100
P4:Quantization 8 8 1 17 13 76.5
P5:Huffman 0 14 2 16 9 56.3
P6:Output to File 11 5 0 16 8 50
Total 30 63 7 100 74 74
MP3
P1:Read File 14 6 0 20 10 50
P2:Polyphase Filtering 10 9 1 20 18 90
P3:Polyphase Filtering 9 10 1 20 18 90
P4:MDCT 9 9 2 20 16 80
P5:Quantization, Enc-
oding, Writeback 7 11 2 20 13 65
Total 49 45 6 100 75 75
JPEG Dec.
P1:Read and Entropy
Decoding 4 14 2 20 11 55
P2:Dequantiz, IDCT for
Y,Cb,Cr and Level Shift 6 11 3 20 14 70
P3:Dequantiz, IDCT for
Y,Cb,Cr and Level Shift 9 9 2 20 18 90
P4:Dequantiz, IDCT for
Y,Cb,Cr and Level Shift 13 3 4 20 11 55
P5:Color Space Conv-
ersion, Write Back 9 9 2 20 15 75
Total 41 46 13 100 69 69

Table II shows that 74%, 75% and 69% of the injected single-bit
errors in the JPEG Encoder, MP3 and JPEG Decoder benchmarks
were detected in our MPSoC system by either the ISS (when the
changed instruction does not exist in the instruction set) or the
MONITOR at runtime. It should be noted that the CFIs in the system
library functions were not tested for fault injection as they are not

currently instrumented. System library can also be instrumented in
the future to provide detection of software attacks and bit flip errors.
In some cases, if the fault injected only changes the opcode of an
instruction to another valid opcode, the fault would not be detected.
The fault is not detected because the control flow remains valid
although the execution is incorrect. For example, if a bit flip changes
the opcode referring tobeq instruction tobne, the next basic block
executed, although incorrect, is still valid in terms of thecontrol flow.
A majority of the undetected faults simply do not lie on the execution
path and hence go undetected.

B. Reliable Inter-Processor Communication

The architectural framework proposed earlier in Section IVcan
be used to achieve soft error detection to ensure reliability of
inter-processor and inter-chip communications. However,a minor
modification is necessary to facilitate this and achieve a robust
framework that can detect soft errors or intentional tampering with
the communicated information between two processors or chips.

1) Append an encrypted checksum to the encrypted information
SID that is being communicated from one processor to the other
or one chip to the other.

2) Decrypt the checksum and the information and then confirm
that the checksum is valid.

We implemented the above modifications to the iCUFFS frame-
work. The checksum is encrypted and appended to the information by
the sender processor and also decrypted and extracted by thereceiver
processor in hardware. The area overheads shown in Figure 14(b)
increased by less than 1% for all the benchmarks. The code overheads
remained the same as shown in Figure 14(a). The code overheads
do not change because no extra software instructions were added to
facilitate the checksum calculation or communication.

The performance overheads further increased by negligible
amounts in JPEG Encoder, approximately 0.5% in MP3 and around
4% in JPEG Decoder. The graph in Figure 15 shows the number of
times the runtime of the modified iCUFFS (with reliability approach)
increases when compared with the iCUFFS approach alone.

X. D ISCUSSION

We employ a dedicated processor in an MPSoC architecture for
security purposes. Such a configuration allows for flexibility in
the design process, where security is often an after thought. The
flexibility arises due to the fact that the MONITOR can be adapted
independently of the application processors. If the customhardware
was designed as a functional unit for each processor, then each
processors functional unit would need to be changed if therewere

PATEL et al.: ARCHITECTURAL FRAMEWORKS FOR SECURITY AND RELIABILITY OFMPSOCS 11

1.000 1.000 1.000 1.000 1.000 1.004 1.000

1.043

1.004
1.010

1.020

1.030

1.040
R

u
n

ti
m

e
 I

n
cr

e
a

se
 (

x
)

1.000 1.000 1.000 1.000 1.000 1.004 1.000 1.004

0.970

0.980

0.990

1.000

grandmom mom mom-daughter garden tennis music galois pattern pip

R
u

n
ti

m
e

 I
n

cr
e

a
se

 (
x

)

Benchmarks
JPEG Encoder MP3 JPEG Decoder

Fig. 15. Increase in Runtime Overhead for iCUFFS with reliability approach
compared to iCUFFS only

any changes in the design. This is often an expensive exercise in an
ASIP based design.

Related work like CCured in the single processor domain yields
performance overheads of up to 150%. The frameworks tCUFFS and
iCUFFS for multiprocessor domain, in comparison, achieve about
a third of performance overheads of CCured. Therefore, suchhigh
performance overheads are common in the research area of security.
A conscious effort of the research community is directed at lowering
these overheads but it is likely to take some time.

Our frameworks can also handle the case when the execution ofa
basic block is interrupted in a program. A new signal calleddeduct
can be used to identify whenever an interrupt occurs before abasic
block has finished execution. The number of cycles or instructions
executed in the interrupt service handler (ISH) can be recorded by
getting the first and the last instructions of the ISH to record the value
of the Cycle Count (CC) register for tCUFFS or Instruction Count
(IC) register for iCUFFS. Hence the number of executed cycles or
instructions in ISH can be calculated and stored e.g., in COUNT ISH.
Thus, in the case ofdeduct signal being active, the application
processor communicates to MONITOR the (CC - COUNTISH)
value for tCUFFS or (IC - COUNTISH) value for iCUFFS. In the
normal case, when there is no interrupt, thedeductsignal would be
low and the CC or IC value would be communicated. Context saving
on the stack is commonly used for nested interrupts. Therefore, in
the case of nested interrupts, the deduct signal as well as the (CC -
COUNT ISH) or the (IC - COUNTISH), can be stored on the stack.
Finally, the count value before the start of the nested interrupt; the
count value during the execution of nested interrupt; and the count
value after the execution of nested interrupt should be subtracted from
CC (for tCUFFS) or IC (for ICUFFS).

Although we have implemented our framework on Xtensa LX2
processor from Tensilica Inc., the simplicity of algorithmin MON-
ITOR and the simplicity of custom hardware means that the frame-
work can be easily adapted for other MPSoC architectures. Our
framework can be scaled to larger systems with many application
processors by employing a greater number of MONITOR processors
keeping in mind the performance and area constraints of the MPSoC
design.

A. Limitations

The limitations of tCUFFS and iCUFFS approaches are as follows:

1) Since our approach provides security solution at the granularity
of a basic block, the runtime penalty of the system is dependent
on the size of the basic blocks.

2) The control flow transitions of the basic blocks with indirect
addressing should be deterministic at compile time or from an
execution profile analysis.

3) Our work does not cover data corruption, or any other form of
attacks like physical or side-channel attacks.

B. Applications and Future Work

The work discussed in this paper has applicability in modern
architectural designs. Although we presented a framework targeting
security of MPSoCs in this paper, our work is also relevant in
automotive and control systems industries, where hard and soft real
time embedded systems are important.

Future work will look at ways to reduce the overheads in the frame-
work. A better static analysis of the code can result in identifying
potential point of attacks in the code and then just instrumenting
them rather than the entire code. Another possibility of reducing
the performance overhead is to pre-compute a hash function for the
program counter (PC) and instruction memory (IR) and store the hash
function for verification at runtime. However, to perform hashing
at runtime, access to PC and IR may be required, which may be
unavailable for commercial processors.

The significant area overhead on the MONITOR can be avoided
by using one of the application processors as a MONITOR. For the
tCUFFS framework, using one of the application processors as a
MONITOR is straight forward because all the processors including
the MONITOR possess a similar configuration. However, for the
iCUFFS framework, the MONITOR must be designed keeping in
mind the application that will run on the MONITOR.

Furthermore, a new “symbiosis” architecture can be devisedsuch
that two or three processors on the MPSoC can be grouped together.
Each processor verifies the execution of one of its fellow processor
in the group. The symbiosis architecture nullifies the need for a
MONITOR hence reducing the area overhead.

XI. CONCLUSIONS

In this paper, we presented two architectural frameworks, tCUFFS
and iCUFFS, for protecting against software attacks. Both the
frameworks, tCUFFS and iCUFFS, used a dedicated processor for
detecting software attacks to detect violations in controlflow of the
applications. Additionally tCUFFS and iCUFFS respectively used the
execution time of basic blocks and instruction count of basic blocks
to detect software attacks. We have presented an analysis that shows
that our framework can ensure secure execution of programs.

Our results showed that iCUFFS had slightly higher runtime
penalty and area overhead compared to tCUFFS. We showed that
the iCUFFS framework can be used to detect bit flip errors in the
control flow instructions and the tests indicated that approximately
70% of such errors are detected. Finally a modified version ofthe
iCUFFS framework was proposed to ensure reliable inter-processor
or inter-chip communication. We believe that our frameworks are
scalable and general enough to be applied to other processors for
detection of software attacks in MPSoCs.

REFERENCES

[1] J. Park, H. Song, S. Cho, N. Han, K. Kim, and J. Park, “A real-time
media framework for asymmetric mpsoc,” inISORC ’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 205–207.

[2] M. Loghi, M. Poncino, and L. Benini, “Cycle-accurate power analysis
for multiprocessor systems-on-a-chip,” inGLSVLSI ’04, NY, USA, 2004,
pp. 410–406.

[3] W. Wolf, “The future of multiprocessor systems-on-chips,” in DAC ’04,
New York, NY, USA, 2004, pp. 681–685.

[4] K. Bhattacharya, S. Kim, and N. Ranganathan, “Improvingthe reliability
of on-chip l2 cache using redundancy,” Oct. 2007, pp. 224–229.

[5] S. Raviet al., “Security in embedded systems: Design challenges.”ACM
Trans. Embedded Comput. Syst., vol. 3, no. 3, pp. 461–491, 2004.

[6] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar, “Seca: security-
enhanced communication architecture,” inCASES ’05. New York, NY,
USA: ACM, 2005, pp. 78–89.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. X, NO. X, JUNE 2010

[7] R. G. Ragel and S. Parameswaran, “Hardware assisted pre-emptive
control flow checking for embedded processors to improve reliability,”
in CODES+ISSS ’06. New York, NY, USA: ACM, 2006, pp. 100–105.

[8] D. Dagon, T. Martin, and T. Starner, “Mobile phones as computing
devices: the viruses are coming!”IEEE Pervasive Computing, vol. 03,
no. 4, pp. 11–15, 2004.

[9] M. Hypponen, “Malware goes mobile,”Scientific American, vol. 295,
no. 5, pp. 70–77, 2006.

[10] A. Raghunathan, S. Ravi, S. Hattangady, and J.-J. Quisquater, “Securing
mobile appliances: new challenges for the system designer,” DATE,
2003, pp. 176–181, 2003.

[11] J. Pincus and B. Baker, “Beyond stack smashing: Recent advances in
exploiting buffer overruns,”IEEE Security and Privacy, vol. 2, no. 4,
pp. 20–27, 2004.

[12] J. Nelißen, “Buffer overflows for dummies,”
(http://www.sans.org/readingroom/whitepapers/threats/481.php),
2002.

[13] R. G. Ragel, “Architectural support for security and reliability in em-
bedded processors,” Ph.D. dissertation, School of CSE, UNSW, Sydney,
Australia, 2006.

[14] K. Bhattacharya, S. Kim, and N. Ranganathan, “Improving the reliability
of on-chip l2 cache using redundancy,” Oct. 2007, pp. 224–229.

[15] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,”
IEEE Micro, vol. 23, no. 4, pp. 14–19, 2003.

[16] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” inProceedings of the 27th annual inter-
national symposium on Computer architecture. ACM Press, 2000, pp.
25–36.

[17] R. W. David Lammers, “Soft errors become hard
truth for logic,” EE Times, 2004. [Online]. Available:
http://www.eetimes.com/showArticle.jhtml?articleID=19400052

[18] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: type-safe retrofitting
of legacy code,” inPOPL ’02, New York, NY, USA, 2002, pp. 128–139.

[19] K. Patel, S. Parameswaran, and S. L. Shee, “Ensuring secure pro-
gram execution in multiprocessor embedded systems: a case study,”
in CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis. New
York, NY, USA: ACM, 2007, pp. 57–62.

[20] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” inProc. 7th
USENIX Security Conference, San Antonio, Texas, Jan 1998, pp.
63–78. [Online]. Available: citeseer.nj.nec.com/cowan98stackguard.html

[21] N. Dor, M. Rodeh, and M. Sagiv, “Cssv: towards a realistic tool for
statically detecting all buffer overflows in c,” inPLDI ’03, NY, USA,
2003, pp. 155–167.

[22] D. Larochelle and D. Evans, “Statically detecting likely buffer
overflow vulnerabilities,” 2001, pp. 177–190. [Online]. Available:
http://www.usenix.org/events/sec01/larochelle.html

[23] R. Rugina and M. Rinard, “Symbolic bounds analysis of pointers, array
indices, and accessed memory regions,” inPLDI ’00. New York, NY,
USA: ACM, 2000, pp. 182–195.

[24] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “Its4: A static
vulnerability scanner for c and c++ code,” inACSAC ’00. Washington,
DC, USA: IEEE Computer Society, 2000, p. 257.

[25] J. Mcgregor et al., “A processor architecture defense against
buffer overflow attacks,” 2003, pp. 243–250. [Online]. Available:
http://ieeexplore.ieee.org/xpls/absall.jsp?arnumber=1270612

[26] D. Aroraet al., “Secure embedded processing through hardware-assisted
run-time monitoring,” inDATE ’05, Washington, DC, USA, 2005, pp.
178–183.

[27] M. Milenkovic, A. Milenkovic, and E. Jovanov, “Hardware support for
code integrity in embedded processors,” inCASES ’05, NY, USA, 2005,
pp. 55–65.

[28] R. G. Ragel and S. Parameswaran, “Impres: integrated monitoring for
processor reliability and security,” inDAC ’06, New York, NY, USA,
2006, pp. 502–505.

[29] N. Nakka, G. P. Saggese, Z. Kalbarczyk, and R. K. Iyer, “An architectural
framework for detecting process hangs/crashes.” inEDCC, ser. Lecture
Notes in Computer Science, M. D. Cin, M. Kaniche, and A. Pataricza,
Eds., vol. 3463. Springer, 2005, pp. 103–121. [Online]. Available:
http://dblp.uni-trier.de/db/conf/edcc/edcc2005.html#NakkaSKI05

[30] L. Wang and R. K. Iyer, “Count&check: Counting instructions to detect
incorrect paths,” inWorkshop on Compiler and Architectural Techniques
for Application Reliability and Security (CATARS), 2008.

[31] K. Patel and S. Parameswaran, “Shield: A software hardware design
methodology for security and reliability of mpsocs,”Design Automation
Conference, 2008. DAC 2008. 45th ACM/IEEE, pp. 858–861, June 2008.

[32] V. Narayanan and Y. Xie, “Reliability concerns in embedded system
designs,”Computer, vol. 39, no. 1, pp. 118–120, 2006.

[33] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust system
design with built-in soft-error resilience,”Computer, vol. 38, no. 2, pp.
43–52, 2005.

[34] D. Siewiorek and L. K.-W. Lai, “Testing of digital systems,” in Pro-
ceedings of the IEEE, vol. 69, no. 10, 1981, pp. 1321–1333.

[35] D. Siewiorek and R. Swarz,Theory and Practice of Reliable System
Design. Digital Press, 1982.

[36] P. Hazucha and C. Svensson, “Impact of cmos technology scaling on the
atmospheric neutron soft error rate,”Nuclear Science, IEEE Transactions
on, vol. 47, no. 6, pp. 2586–2594, Dec 2000.

[37] C. Hescott, D. Ness, and D. Lilja, “Scaling analytical models for soft
error rate estimation under a multiple-fault environment,” Aug. 2007,
pp. 641–648.

[38] iRoC Technologies, “New trends and solutions to combatsoft error
threats to nanometer semiconductors,” White paper, iRoC Technologies
Ltd., February 2004.

[39] T. Semiconductor, “Soft errors in electronic memory - awhite paper,”
White paper, Tezzaron Semiconductor, January 2004, available online
(7 pages).

[40] A. Avizienis, “The n-version approach to fault-tolerant software,”IEEE
Trans. Softw. Eng., vol. 11, no. 12, pp. 1491–1501, 1985.

[41] A. Hopkins, T. Smith, and J. Lala, “Ftmp - a highly reliable fault-tolerant
multiprocessor for aircraft (1978),”Proceedings of the IEEE, vol. 66, pp.
1221–1239, October 1978.

[42] G. Reis, D. August, R. Cohn, , and S. Mukherjee, “Software fault
detection using dynamic instrumentation,” inBARC ’06: Proceedings of
the Fourth Annual Boston Area Architecture Workshop, February 2006.

[43] S. Bagchi, Y. Liu, K. Whisnant, Z. Kalbarczyk, R. K. Iyer, Y. Levendel,
and L. Votta, “A framework for database audit and control flowchecking
for a wireless telephone network controller,” inDSN ’01: Proceedings of
the 2001 International Conference on Dependable Systems and Networks
(formerly: FTCS). Washington, DC, USA: IEEE Computer Society,
2001, pp. 225–234.

[44] B. Ramamurthy and S. Upadhyaya, “Watchdog processor-assisted fast
recovery in distributed systems,” inFifth IEEE Int’l Working Conf.
Dependable Computing for Critical Applications. IEEE Computer
Society Press, September 1995, pp. 125–134.

[45] T. Michel, R. Leveugle, and G. Saucier, “A new approach to control flow
checking without program modification,” inTwenty-First International
Symposium on Fault-Tolerant Computing. FTCS-21, June 1991, pp. 334–
341.

[46] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step towards
automated detection of buffer overrun vulnerabilities,” in Network and
Distributed System Security Symposium, San Diego, CA, February 2000,
pp. 3–17. [Online]. Available: citeseer.nj.nec.com/wagner00first.html

[47] Y. Younan, W. Joosen, and F. Piessens, “Code injection in C and C++: A
survey of vulnerabilities and countermeasures,” Departement Comput-
erwetenschappen, Katholieke Universiteit Leuven, Tech. Rep. CW386,
Jul. 2004. [Online]. Available: citeseer.ist.psu.edu/younan04code.html

[48] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” inDAC ’07. New York,
USA: ACM, 2007, pp. 9–14.

[49] C. Rowen and D. Maydan, “Automated processor generation for system-
on-chip,” Tensilica Inc., Tech. Rep., Sept 2001.

[50] S. L. Shee and S. Parameswaran, “Design methodology forpipelined
heterogeneous multiprocessor system.” inDAC, 2007, pp. 811–816.

[51] J. Wong, A. Ignjatovic, and A. Janapsatya, “Multiprocessor implemen-
tation of image compression algorithms,” inBE Thesis, School of CSE,
The University of New South Wales, 2007.

[52] M. A. Schuette and J. P. Shen, “Processor control flow monitoring using
signatured instruction streams,”IEEE Trans. Comput., vol. 36, no. 3, pp.
264–276, 1987.

[53] J. Ohlsson, M. Rimn, and U. Gunneflo, “A study of the effects of
transient fault injection into a 32-bit risc with built-in watchdog.” in
FTCS, 1992, pp. 316–325.

