IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SSTEMS, VOL. X, NO. X, JUNE 2010 1

Architectural Frameworks for Security and Reliability of
MPSo0Cs

Krutartha PatelMember, IEEE Sri Parameswaramember, IEEEand Roshan RageMember, IEEE

Abstract—Multiprocessor System on Chip (MPSoC) architectures are
increasingly used in modern embedded systems. MPSoCs areegsfor
confidential and critical applications and hence need strog security and
reliability features.

Software attacks exploit vulnerabilities in the software on MPSoCs. In
this paper we propose two MPSoC architectural frameworks, CUFFS
and iICUFFS, for an Application Specific Instruction set Proessor (ASIP)
design. Both tCUFFS and iCUFFS employ a dedicated securityrpcessor
for detecting software attacks.

iICUFFS relies on the exact number of instructions in the basi block to
determine an attack and tCUFFS relies on time-frame based nasures.
In addition to software attacks, reliability concerns of bit flip errors in the
control flow instructions (CFls) are also addressed. Additbnal method
is proposed to the iICUFFS framework to ensure reliable intesprocessor
communication.

The results for the implementation on Xtensa processor fronTensilica
showed, worst case runtime penalty of 38% for tCUFFS and 44%
for iICUFFS, and worst case area overhead of 33% for tCUFFS and
40% for iICUFFS. The existing iCUFFS framework was able to detct
approximately 70% of bit flip errors in the CFls. The modified i CUFFS
framework proposed for reliable inter-processor communi@tion was at
most 4% slower than the existing ICUFFS framework.

Index Terms—Architecture, Code Injection, Reliability, Instruction
Count, MPSoC, Tensilica

. INTRODUCTION

In systems design, Multiprocessor System on Chips (MPSafes)
emerging as the pre-eminent design solution to increasamgadds
in functional requirements, low power needs, and prograbiiiha

significant risks [8, 9]. Given that such devices already lesnp
MPSoC architectures, it is imperative that security is @ered

at design time rather than be employed as a reactive measure.

Incorporating security in the design definitely increasesrloeads,
but given the ability of attacks to cause fraud, disrupt\vétgtior
threaten the confidentiality of data, the overheads arehwtbe cost
[6, 10].

Software attacks in systems usually aim to execute makctmae
that is either already present in the system or is injectéackSand
heap based buffer overflows are the most common type of s@ftwa
attacks [11]. The buffer overflow vulnerabilities in applion pro-
grams have been exploited since 1988 [12] and still contioulee
exploited. On average nearly 11% of the vulnerabilitiesortgd by
the US-CERT vulnerability reports over the last three ygmsain
to buffer overflow attacks. Figure 1 shows the percentageutitb
overflow attacks in each month of 2006, 2007 and 2008.

[1]. The multimedia devices such as portable music playerd a

cell-phones already deploy MPSoCs to exploit data proogsgar-
allelism and provide multiple functionalities [2, 3]. Withcreased
functionalities the complexity of the design increases] trerefore
the susceptibility of the system to attacks from adversariEhe
small form factor for aesthetics of the devices and deepeelipies
to increase clock frequency for faster throughput have &lsen
responsible for reliability errors [4].

Embedded systems designers rarely include security indlsign
objectives. The short design turnaround times, due to cttivee
pressure of getting a system out in the market, is often sbake
by getting the functionality, performance and energy regmaents
correct [5]. Weaknesses in system implementation inelyitedmain

H 2006 m 2007 2008

< 18
3 15
=]
T 12
[
3 9
8 6
£
a 3

0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Months
Fig. 1. US-CERT reported buffer overflow vulnerabilities

Embedded devices are moving towards miniaturization téeseh
a small form factor [2, 3]. The improvement in nanometer textbgy
is helping to achieve miniaturization. However, along wittese
advancements, there are several challenges brought abdatnis
of device reliability. The work in this paper targe®oft Errors
which normally arise from Single Event Upsets (SEUs). SEl is
change of state that can occur when ionizing radiationesréµ-
electronic device like a microprocessor, semiconductomorg or
power transistors [13]. An SEU can result in a signal or dabaimg
garbled or wrong.

and are often exploited by the attackers in the form of either Soft errors are a type of a transient fault that occur due idaen

physical, software or side-channel attacks. Softwarecledtahat
exploit vulnerabilities in software code or weaknesseshian gystem

events. Researchers have predicted an increase in safs elue to
advances in low power and low voltage technologies and aser@

design are the most common type of attacks [6]. A reprievenfroclock frequencies [14, 15]. The reduced voltage level ofdheent

an attack still does not guarantee correct execution of tiftevare
because there could be reliability errors. Reliabilityoesrmay further
hinder correct execution of the program due to, for exanipte]ips
errors [7].

Recent literature suggests that newer security threatgettag
portable electronics like mobile phones and music playeag pose

microprocessors make them susceptible to corruption. kample,

if small voltage levels with a small difference are used toresent
bits 0 and 1, then exposure to ionizing radiation may eadiigr a
the voltages and hence the bits [16]. Decreasing voltagdstta

miniaturization of devices has consequently brought aboubcrease
in soft-error-rates (SERSs) [17].

K. Patel and S. Parameswaran are with the School of Computer

Science and Engineering, University of New South Wales (WNS
Sydney, NSW 2052 AUSTRALIA e-mail: (kpatel4d5@gmail.comrids-
van@cse.unsw.edu.au). R. Ragel is with the University ohdmiya, SRI
LANKA e-mail: (roshanr@ce.pdn.ac.lk)

Manuscript received August xx, 2009; revised XXXX xx, 2009.

A. Paper Overview
In this paper, we draw a comparison between two architectura

framework for detection of software attacks. One of the framorks

(iCUFFS) is based on ensuring that the correct number aflicsbns

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SSTEMS, VOL. X, NO. X, JUNE 2010

are executed between “check-points” and the other ({CURHA®sed assumptions of our work are in Section Ill. The architedtdesign

on ensuring that the number of clock cycles between two gi@nks for tCUFFS and iCUFFS is shown and contrasted in Section IV.
is within some pre-analyzed limits. In addition both tCUFBSd Section V and Section VI explain as well as differentiate the
iICUFFS frameworks perform control flow checks of the programsoftware and hardware design flows respectively for bothdesigns.
execution that help detect both security and reliabilityoes. We Section VII presents scenarios of how our two designs witiqrt
design an MPSoC with a dedicated security processor called an MPSoC against attacks. Experimental results of both ¢segds
MONITOR. We tackle the issue of adding security to MPSoCeayist are presented in Section VIII. Section IX shows the use ofRES

at the processor design level because the overheads arevdwea framework for reliability analysis. Discussion and corsitins are
compared to the overheads incurred when addressing seatitite presented in Section X and Section XI| respectively.

software level [18, 19].

Each basic block in the application processors of the MPSoC i
instrumented with one or two check-points. These checktpaiep-
resent a special instruction that reports to the MONITORuatime. ~ The countermeasures to software attacks can be broadsifigds
For the tCUFFS framework, the special instruction repdutsdycle into either software based or architectural (hardwaregthaSoftware
count time and for the iCUFFS framework, the special indtonc Pased countermeasures consist of either static or dynacfioigues.
reports the instruction count. Static analysis on the mmogrs Static analysis tools help in removing possible vulneitid in the
performed at compile time to extract the control flow of thegzam. code at compile time. Various static analysis techniques Hmeen
For the tCUFFS approach the minimum and maximum executig¥oposed in the literature [20—-24]. Dynamic analysis tépines aim
time between check-points is determined by simulationyaigland to detect errors or attacks at runtime. A well-known dynaamialysis
for the iICUFFS approach the number of instructions betwdwn ttool CCured uses both static analysis and efficient runtineeks to
check-points are determined using static analysis. Fort@uFFS ensure that the pointers are used safely in C programs [18].
approach, the control flow, and the minimum and maximum gi@wu ~ Hardware techniques for detecting attacks usually useooised
times are stored inside the hardware tables. For the iCUBp®ach, hardware blocks for runtime checks. McGregor et al. propose
the control flow, and the number of instructions are recorigsile Special return address stack (SRAS) [25] for protectingreguffer
hardware tables of the MONITOR. overflow attacks while Arora et al. [26] proposed a hardwaoitor

At runtime, the application processors report to the MONRIO that uses the trace of the executing instructions and progddresses
using the special instructions as to which basic block they afor detecting common software and physical attacks. Mibeitket al.
executing and the value of the processor’s Cycle Count (€@ister [27] proposed a signature verification unit that checks tistrictions
(for tCUFFS) or the Instruction Counter (IC) register (fAUFFS). that are fetched from the memory. Ragel et al. [28] proposkésic
The MONITOR uses the communicated information to check thitock validation scheme by modifying the processor’s nirstuc-
the control flow is correct and that the number of clock cycleions. Nakka et al. [29] proposed a processor pipeline muaditin
or instructions between two check-points is in accordanith the framework for detecting a process crash or hang. Wang eg@l]. [
information stored in its tables. However, if the MONITORd#nthat Proposed checking the instruction counter register at thetfon
the control flow is incorrect or that the number of clock cgclar level for detecting incorrect execution paths in programs.
instructions between two check-points mismatch with tHaevin its Static analysis techniques do not capture all the vulnktiabiin
hardware tables, it sends an interrupt to all the processoebort the code and often raise a number of false positives. Sorke, li
execution. the Stack Guard [20], aim to solve specific problems like thel

One of the novel contributions of the ICUFFS framework is theverflow attacks and may not work for other types of softwatacks.
“active” MONITOR processor. By “active” we mean that it ckec Dynamic code analysis techniques often incur high runtivezlteads
the value of the IC register of the application processotiera due to extra processing at runtime. For example, CCuredifit8Fs
than just relying on only the information communicated tdridm performance overhead of up to 150%.
the application processors. By reading the value from theth@ A majority of the proposed hardware based methods need sig-
MONITOR determines whether or not an application processs nificant architectural modifications which is a major lintide for
missed reporting at a check-point. If the MONITOR finds that aommercial and extensible processors like Tensilica’sn¥ael X2.
check-point has been passed through without reportingttankais Xtensa LX2 provides a base processor implementation whioh c
inferred and the application processors’ execution on tHeSMC be extended using custom instructions defined using TIEs{liea
is interrupted. Therefore the framework allows detectibratbacks Instruction Extension). Furthermore, the hardware dpsori of the
even when the application processors do not communicate thvt base processor is unavailable, which restricts major nuadifins to
MONITOR. the processor.

The ICUFFS framework proposed in this paper, is also applied The SRAS [25] and the hardware monitor [26] are not scalable
to test for reliability errors in the control flow instructis of the for commercial processors like Xtensa LX2 due to unavditgbi
application processors. Moreover, a checksum based ioariaf of a special stack required for SRAS and access to the exkcute
the iICUFFS framework is also proposed for reliable intevepssor instructions (at runtime) required by the hardware monifarcess
communication on MPSoCs. to the instruction register (IR) is also unavailable in X¢ar X2 and

The frameworks tCUFFS and iCUFFS, have differing strength®ence signature verification [27] is not possible. The nii=tuc-
and weaknesses. This allows one framework to be more seitaldl tions modification [28] and the pipeline modification [29gaso not
designer’s requirements than the other. The tCUFFS frametvas possible due to the unavailability of the base processaisiiare
a lower code size and therefore performance overhead cedhpar description. The approach proposed by Wang et al. [30] nesitsus
the iCUFFS framework. However, iCUFFS has lesser area eaérh training data sets to build the instruction count valuesgmygram
compared to tCUFFS, therefore iCUFFS is more suitable to @ath patterns. New program paths encountered at runtimehvare
MPSoC design with a tighter area constraint. not in the training set result in false positives.

The remainder of the paper is organized as follows. RelatetkW Therefore the existing single processor software and hemelw
is presented in Section Il. The motivation, problem statnsnd solutions discussed above are not quite scalable or needicagt

II. RELATED WORK

PATEL et al: ARCHITECTURAL FRAMEWORKS FOR SECURITY AND RELIABILITY OFMPSOCS

architectural modifications which is unrealizable for esible com-
mercial processors like Xtensa LX2.

Some reliable designs to protect against fault tolerances a
Soft Errors, proposed in the literature [40-42], rely on raggive

Two approaches, a software solution [19] and a hardwareebagedundancies. This category of techniques is normallyrmedeto as

solution [31] have been previously proposed for detectiofjware
attacks in the multiprocessor domain.

Our work differs from the previous work for detecting softea
attacks on an MPSoC architecture in the following ways. THeRFS
uses only one special instruction per basic block as opptséao
special instructions used by [19, 31]. Therefore the codetmad in

Modular Redundancyechniques. Reis et al. rely on duplications of
some important registers like the stack pointer and a flagstarg
Hopkins et al. provide a Fault Tolerant Multiprocessor (FAM
architecture for aerospace applications [41]. In the FTNPraach
by Hopkins et al., the information is processed and trariethiin
triplicates so that errors can be corrected. Avizienis @sesultiple

tCUFFS is half compared to [19] and [31]. Moreover tCUFFS alscomputation approach (byv-fold where N > 2) that performs

checks every single line of program code compared to [19, Bi¢

code overhead in iICUFFS will always be less than or equald@tile
overhead in [19] and [31] because unlike two special insibns per
basic block in [19] and [31], iICUFFS uses either one or twocide
instructions per basic block.

The iICUFFS framework uses theumber of executed instruc-
tions compared to the use ekecution time in clock cylesn [19, 31]
to verify correct execution between two check-points in ppligation
program. The iCUFFS framework therefore knows éxact number
of instructions that must be executed from one check-painthe
next compared to the time reliant methodology in [19, 31]jch
employs a range of execution times.

computations in three domains: time(repetition), spaaeffare) and
information (software).

The work proposed by Bagchi et al. proposes a preemptive
control based signature checking (PECOS) mechanism faiesin
processors [43]. PECOS employs a software based methgdtiiag
uses embedded assertions in the assembly code, which ggeré&id
at runtime [43].

The techniques proposed by Ragel et al. [7] involve architat
modification for checking control flow errors. The technigoeolves
duplicating the control flow instruction fetch, then perfing hard-
ware checks to detect the bit flips in the instruction memory.

Ramamurthy et al. propose a watchdog processor based cemicur

The approaches in [19, 31] proposed a dedicated processor ggror detection mechanism and error recovery [44]. The caubr

security which was “passive”; i.e., the security procesaauld
only perform timing or control flow checks when the applioati
processors communicated. In contrast, our iICUFFS framewor-
poses an “active” processor that probes all the applicaiionessors

uses signature analysis and is used to detect bit as well rasoto
flow errors. The watchdog processor presented by Ramamusgly e
is add-on hardware and hence it would require integraticth an
existing processor.

on the MPSoC by regularly reading their IC for security ctseck Another watchdog monitoring approach using a watchdog pro-

Hence iCUFFS even detects attacks that can hijack the mocés

executing malicious code and never communicate with tharggc
processor whereas neither of the approaches proposed 3119
could detect such attacks.

cessor is suggested by Michel et al. [45]. This allows cdrftowv
checking without the need to modify the program. The watghdo
processor has two tasks. The first is to compute the signafutee
executed instruction sequence. The second is the detecfidthe

The work proposed in [19, 31] requires the program's exeouti Nodes reached by the main processor. . .
trace to find the range of execution times a basic block caa.tak Modular Redundancy techniques are expensive due to thevmass

Furthermore, the basic blocks that do not fall on the exeougiath
have their execution times estimated using the processmtiiction
set architecture (ISA). The iCUFFS framework only needs riovk
the exact number of instructions in each basic block which
available by static analysis of the assembly code and heZIdERFS
neither needs any execution trace analysis nor does it mesgbort
to estimation.

Both the tCUFFS and iCUFFS frameworks we propose, can
used to detect soft errors in the control flow instructions$-16J.

amount of redundancy involved. Generally, Modular Reduoga
techniques are not plausible in embedded systems which tighe
space and speed requirements. The approaches mentioned4be
i42] face high overheads due to redundancy.

PECOS has a significant code overhead of between 50% 150%.
Additionally, it also has a significant program storage bead of
greater than 100% in average cases. The program storageeader
e a result of storing the reference signatures of basickisland
checking code [43]. PECOS detects around 87% of control flow

Additionally, we propose for the first time, a modified iICUFFSITOIS.

framework to ensure reliable inter-processor commurdoafor an
MPSoC framework.

A. Reliability

The advent of advanced fabrication technologies providesef
and powerful functionality but at the same time brings alsighifi-
cant reliability concerns [32, 33]. We targ8bft Errors also known
as SEUs (Single Event Upsets) that result in a signal or déieimg
garbled or wrong. An explanation of how the soft errors maypasa
is detailed below.

Transient faults are one of the reliability concerns and wualyst

by Siewiorek et al. in [34, 35] revealed that more than 90%hef t

system faults are caused by transient faults. Transiefitsfagcur
due to many reasons that include electromagnetic interferegpower
fluctuations, interconnect noise and soft errors. Softrerace a major
concern due to technological advances like deep pipelidegice
scaling, lower power consumption and supply voltage [4, 3%;
39].

The approach in Ragel et al. [7] relies on micro-instruction
modification of the instruction set architecture. It alsayuiees
implementation of aShadow PCto overcome the problem of bit
flips or a burst in thgorogram counter (PC) register. To implement
a Shadow PGas well as to modify the micro-instructions, a designer
needs access to the hardware implementation of the pracesso
Commercial processors like Tensilica do not allow accessh&o
hardware implementation of the processor.

The approaches by Ramamurthy et al. and Michel et al. [44, 45]
use a watchdog processor, but they are limited to checkiraysein
only one processor. Hence the approaches by Ramamurthyagtchl
Michel et al. [44, 45] can't be used for MPSoCs.

Both the tCUFFS and iCUFFS frameworks we propose, can be
used to detect soft errors in the control flow instructions$-16J.
Additionally, a modified iICUFFS framework is proposed to wes
reliable inter-processor communication.

This paper proposes a framework for incorporating sectaitgl
reliability features on an MPSoC. One of the novel contiiing of
this paper to the literature is that it only uses the existiiggign

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SSTEMS, VOL. X, NO. X, JUNE 2010

flow of commercial processors for an MPSoC design. There is wan be completely secured. This is a reasonable assumptien g

extra hardware added to the commercial processor beyonuiitiee that MONITOR is a dedicated processor for security and ounhsr

hardware extensions that are allowed by the commercialepsme. a loop that executes the customized hardware instructidhss

Therefore, not only do we explore the unknown territory of 8®s, small number of instructions can be easily placed in a ROMhas t

but we also propose a security and reliability solution foPS6Cs. instructions need not change.

Previous hardware approaches were on single processorelieu The storage tables are built in hardware, keeping in mind the

heavily on significant hardware modifications. Newer attatke speed/performance impacts. There may be memory accessiéste

side-channel attacks rely on monitoring bus traffic on an MBS involved which reduces the performance, if the tables wese n

Although, side-channel attacks are beyond the scope op#per, we built in hardware. However, if the problem was done in other

identify the threat of monitoring bus traffic to reliable comnication platforms like ASIPMeister (where hardware descriptiopafcessor

on an MPSoC. Therefore, we provide measures to protect tee inimplementation was available unlike Xtensa LX2), a loadatable

processor and inter-chip communication by encrypting them may be considered. Such loadable tables would be updated whe
software is updated. However, our work hasn't explored dgson

I1l. M OTIVATION, PROBLEM STATEMENT & A SSUMPTIONS of loadable tables yet.
Figure 2 shows an example of a stack buffer overflow attack.

Figure 2(a) shows a snippet of vulnerable C code, Figure {byvs IV. MPSOC ARCHITECTURALDESIGN

the layout of the stack when functiamis called from functionf. We have implemented the proposed frameworks of tCUFFS and

As part of writing data to the arrapuffer in g, the attacker may iCUFFS using the Xtensa LX2 processor from Tensilica Ince Th

supply malicious code in arrdyuf before making a call tg. Passing Xtensa LX2 processor provides a base core implementatairctn-

a sufficiently higher value thaiK (which in this case is 50), in tains 80 instructions. The base core can be further cuseafrfiom

len, would ensure that the stack overflows and the return addreggnsa’s existing resource pool by adding co-processotstiptier

is overwritten as shown in Figure 2(c). Thus the control flofv ounits, Boolean registers, local memories, etc. It is alsesjbe to

the program is changed to execute malicious code. This ehang customize the processor by changing features such as teéngip

behavior disrupts the code integrity and causes fallacfmegram |ength and instruction fetch widths. Besides the custotitiaa from

behavior. the existing resource pool, user-defined hardware ingtngtan be

created using Tensilica Instruction Extension (TIE) laeggt Xtensa

f#define K 50 Lower buffer[0] Attacker’ d : X X)

i €0 Addresses| e = o LX2 also provides implementation for ports and queues wivigh
- Stack .| use in our architectural framework. The Xtensa LX2 procesdso
g (buf,len); buffe.r[K-1] 0 — | I defini t ister fil d st tablesdos@nt
Stack [local variabies g0 \ allows defining custom register files and storage tablesdostants.

! Growth | saved FP g() l The common MPSoC architecture layout we propose (for both

. . . dd

s i €y e sk S I tCUFFS and iCUFFS) in this paper is shown in Figure 3(a). The
s Sy local variables ()| 12K [iocal variables) extension to the common architecture layout which is necgsor
o T igner | _savedfRI0 | g | _saved TR0 iCUFFS is not shown in Figure 3(a), and will be shown latertHe

A Addresse: v eturn address f() X . A)

@ ®) © MPSoC layout in Figure 3(a), there ar€ application processors
) and one additional MONITOR processor that supervises fhe
Fig. 2. A stack based buffer overflow attack. application processors. Th& application processors can execute

in any arbitrary fashion. For example, the programs can wgrec

As discussed earlier in Section I, the SOftWare attacksmmost independent'y as Shown in Figure 3(a) or as a pipe"ne quﬂm’s
common types of attacks. Such attacks do not require anyiadpe¢ommunicating amongst themselves.

equipment or sophisticated techniques, unlike physictlcks or

side-channel attacks. A detailed explanation of commornwsoé App App App | | [App Proc
attacks (heap attacks, format string vulnerabilities,imjection, etc.) Proc 1 Proc2 | | ProcN } PchW
can be found in the literature [11, 46, 47]. mpoﬁ z HFOZE % F.FONE 1 [Tew %E, Empty
Our work targets software attacks on an MPSoC architechae t 5 5 e e Qeve ‘%l
aim to subvert the control flow of the user’'s application te@xe \ MONITOR
- - MONITOR |
malicious code. Stack and heap based buffer overflows (cgeletion : Pu

attacks), pointer subterfuge attacks and arc injectiackstare prime @ ®
examples of softwgre attacks that are targeteo! in this wavk. Fig. 3. (a) An MPSoC system with a MONITOR (b) Communicatioes
do not target physical attacks, such as damaging the MPSoC fgo
force or erasure of data/instruction memory through plajsiccess,
to the device. Our work also does not target side-channatkgt On the MPSoC system, one of the key features we employ is
on embedded systems which typically involves the use of powa FIFO queue for inter-processor communication. The FIF€ugu
measurements (or other signals which emanate from the a)eviallows communication at runtime between an applicatiorc@ssor
to find crucial information from the application program,ceuas and the MONITOR processor. The FIFO shown in Figure 3(b)
encryption keys. ensures that every time an input is receive@G (from Cycle Count
We assume that the system calls are safe and hence need ndRégister) odC (from Instruction Count Register) reading is attached
supervised. If needed however, the functions in the systbrary to the input. TheCC is utilized by the tCUFFS approach where as the
can also be easily instrumented using the tCUFFS and iCUFFSis utilized by the iCUFFS approach for ensuring correcigoam
frameworks discussed in this paper. We also assume thatuaese@xecution. The FIFO queue stalls when attempting to read o
“loader” is used for loading the programs in the processdre T empty queue and write to a full queue using the Empty and Full
“loader” is trusted so that it cannot compromise the progcante. signals shown in Figure 3(b).
We assume that the programs that execute on each applicatioiihe architectural layout for the iCUFFS approach is shown in
processor are fixed at design time and also that the MONITCRgure 4. It is an extension to the tCUFFS layout shown earlie

PATEL et al: ARCHITECTURAL FRAMEWORKS FOR SECURITY AND RELIABILITY OFMPSOCS 5

. N [~ N\
in Figure 3(a). The iCUFFS design is equipped with a hardware o BEES EH 3t ICURFR G302
. addi.n al2,al0,1 £k nEmeh M pEl)
unit called CHK_IC that allows the MONITOR to probe all the B2 alla1,172 52 allat, 172 2 iR
application processors to obtain thé@ reading through a shared e o Danen Al gEpen
memory interface as shown in Figure 4. TB&K_IC allows the | pew W
MONITOR to detect an attack even in the case of an application | moun =11 o 6o icurFs 6079
H H , H mov-n . movi.n a { 11,1
processor being hijacked by an attacker. The MONITOR’svacti movn a12,a7 v =118 E Eg,zag
) A . . . mov.n al3, a6 mov.n b ¥ 3
probing of the application processors allows it to foil anaek movin 26, 55 e zigé movn al3, a6
. movi.n ab, a . L
even if the attacker prevents any communication from thdicaifon o el i’ iread e
processors using the special FIFO instructions. The metbgy is Y e asa100
described in detail as a combination of software and harehaasign sends a8 | tCURFB 6522 (a: lcure 6522
.) X addin al0,al0,1 a8, alo, 0 18ui a8, alo, 0
flows in the following two sections. o a7,a7,a8 0101 in 0,101
bne a7, a6, L4 :;, :;‘ E? xor :;, :Z. EE
L5:
App App App movi.n a6,0
Proc 1 Proc 2 Proc N xor a5,a4,a3 :?,73 mL5:movi.n 2273
= add a8, a7, a5 a5, a4, a3 xor a5, a4, a3
FIFOE = FIFO,m| T f N a fz 132r a8, .LcO 8,27, 55 add aBar,ss
2S¢ - =L addi.n a6, a6, 1 ! B . gs
E) 5 101011 SharedFlFON ‘ 15 \——b"—e“a‘&jgts‘ -7 . :g: Zgﬁan - Eﬂ‘:l'n :g:g&}m—s /
N MONI_TOR Memery 3_ (a) a code segment (b) CF graph with tCUFFB insn. (c) CF graph with iCUFFB/E insn
N |
Fig. 6. Basic block division and control flow extraction

Fig. 4. The design of the iICUFFS architectural framework . . .
Each processor is assigned a unique processor ID and eacli BB o

the program in the processor is assigned a unique block IhgUs
the processor ID and the block ID, a special ID cal#i® is created
for each BB. We assume that th8D is encrypted using a distinct
The software design flow used by both tCUFFS and iCUFFS é?lcryption key (based upon physica| uncloneable funct(mlz)’
shown in Figure 5 and discussed in the f0||OWing two subeasti proposed in [48]’ to acquire an encryption key using the WS
properties of integrated circuits in the MPSoCs) at loacetiny the
A. Software Design Flow - tCUFFS secure “loader”. An exact copy of the encryption key is alsmesd
in hardware as shown in Figure 7 to decrypt 8i® at runtime. The
importance of encrypting th8ID is further discussed in Section VII.

V. SOFTWAREDESIGNFLOW

Firstly, the application program’s source code in C/C++aspiled
to obtain the source code in assembly. The assembly soudeeiso

then divided into basic blocks (BBs) as shown in Figure 6ajHe The BB instrumentation procedure is differept for the twanfie- .
dotted lines. A BB is defined as a set of sequential instrostinat WOrks. For the tCUFFS framework, each BB is instrumentedh wit

end in a control flow instruction like &ranch, jump, system call ©nly @ single special instruction call€UFFB as shown in top
or function call instruction. Once the program is divided into BBshree boxes in Figure 6(b). TREUFFB instruction is inserted at the
static analysis is performed to yield @ntrol flow graph of the start of each basic block. The number in #@JFFB instruction is

program at the BB level which is shown in Figure 6(b). the engryptedSID. A B.B representlr.lg a loop where the frequency of
execution can be statically known is instrumented sligtifierently

(1 \) by our static analyzer as shown in the last BB of Figure 6(h). A
Source.s Basi Block Sodified BosioBlock || Contrl Fow extra label (this casenL5) is inserted after théCUFFB instruction
vision i nstrumentation xtraction . . .
. and the target of the branch is changed to this extra laihél. This
A _ Secure instumented] [pcgemies || simuaton type of instrumentation allqws tHE€UFFB instruction to be executed
on"ﬁ,.psw Loacing Y Link Analysis only once for each execution of the loop.
_Software Design Flow - tCUFFS W,
Source.s Basic Block Modified Basic Block Control Flow
Division Source.s Instrumentation | 7| Extraction B. Software Design Flow - iCUFFS
¥
App o et secte @ insiamented Assemble & || Instruction The stages in the software design flow for ICUFFS are idelntica
onMPSoc S Loadng ik Count Analysis tCUFFS except that tCUFFS uses simulation analysis whdi& RS
_Software Design Flow - ICUFFS Z uses instruction count analysis.
Fig. 5. The software design in the proposed framework For the iCUFFS approach, each BB is instrumented with one or

two special instructions as shown in Figure 6(c). A spei€ialFFB

Dividing a program into basic blocks allows low level momitagy instruction is always added as the first instruction in eagh B
of a program running on an application processor in an MPI®@. For a BB that ends in a system call, another instruct@dFFE is
advantage of monitoring a program at the granularity of BBves added before the system call. An example of such a BB is shown i
a rapid stop of the system on compromise, and an attack canthe second BB box in Figure 6(c). Therefore BBs ending in &esys
narrowed to a small chunk of instructions. Commercial pssoes do call contain two special instructions per BB.
not allow access to processor implementation or speci#tezg like The number in theiCUFFB and iCUFFE instruction is the
program counter and instruction register, hence monigoaina lower encryptedSID. The instrumentation for a BB representing a loop
granularity than BB is not possible. Monitoring at a funatievel is (where the execution frequency can be statically known)oisedin
possible (higher granularity than BB), but functions campadse of exactly the same manner as described above for tCUFFS. Thie on
several control flow instructions and it is difficult to istdathe place difference being that in the iCUFFS approach, the specstuntion
of attack inside a function. added isiCUFFB instead oft CUFFB.

C. Control Flow Extraction - tCUFFS and iCUFFS

The static analysis of the instrumented assembly file alstdyi
a control flow map of the program which is shown using arrows
Figure 6(b) and (c) for tCUFFS and iCUFFS respectively. Siaach

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SSTEMS, VOL. X, NO. X, JUNE 2010

F. Assemble, Link and Loading - tCUFFS and iCUFFS

Finally the instrumented application is assembled and thary is
ilwaded through a secure “loader” into the application pseoe of the
MPSoC using a secure key (same random key that is built irgo th

of the BBs are given &ID, the control flow map can be expressedase architectural configuration as shown in Figure 7). Ebasic
in terms ofSID. The BBs with an indirect control flow, however mayarchitectural configuration as well as the secure loadergies with

not be resolved at compile time. Hence simulation trace fildyesis
may be required. This analysis is described in the next stibse

D. Simulation Analysis - tCUFFS

The ‘Simulation Analysis’ stage in the tCUFFS approach aots
the minimum and maximum execution time for each BB by analyzi
the execution trace after simulation. Using the trace fitedpced for
each processor, we are able to find the time taken by eachdtistr
that was executed. Adding up the execution time of eachuiastin of
a particular basic block, we get the execution time of thaidblock.
It is likely that some basic blocks have been executed moze
once and that their execution time has a range of values. atigec
in the architecture also introduces variability in timingpgnding on
whether the instruction was in the cache or had to be fetctwd f
the memory.

It may also be possible that the execution path of the progtaes
not include all possible sections of the code. The timingrimfation
for those blocks of code would therefore be unavailableughothe
tracefile analysis. It is likely that these sections of thdecanay not
be used much except in corner cases. Thus another tool thattss
the time for these blocks is used. This tool estimates howhntince
each instruction in the block may take by using the instamctet
simulator's (ISS’s) general guide. A history of the samerafien
instruction can also be looked at in the tracefile to get amest
on the min and max time for the instruction.

Once each instruction’s min and max times are estimatedign th

unexecuted basic block, we can sum up these estimated \ahaes
get the estimated execution time for the basic block. Themrmim
and the maximum execution time of all the basic blocks arerde

and stored in the MONITOR processor for the tCUFFS approach.
The simulation analysis can also be used to resolve indirect

branches in the code. The tracefile shows the control flovsitians
from the BB containing the indirect control flow instructig@FI)

to other BB. Thus the control flow graphs generated in theipusv
subsection can be further reinforced using the analysiseofracefile.

it are built with a different random hardware key.

We also refer to places where special instructid@JFFB,
iCUFFB and iCUFFE are inserted as “check-points” in this paper.
All the instructions,tCUFFB, iCUFFB and iCUFFE are hardware
instructions that write to a FIFO queue when executed.

VI. HARDWARE DESIGN FLOW

The hardware design flow for both tCUFFS and iCUFFS is shown
in Figure 7. Examining the tCUFFS approach, it can be seeniba
start with a base processor configuration that is customized/o

thstages to finally obtain either an application processoMONITOR

processor. The first stage involves the processor’s cugtdion using
the existing pool of resources labelled from A to F in Figurf fiere
are many other pre-built resources available in the Xtenséset,
which the base processor can be customized with [49]. Haweve
we only show six, labelled from A to F in Figure 7 due to space
limitations.

Existing Resource Pool
A B C

Max Insn
Width

D

MIN/MAX/
MINU/MAXU

E

Co-
processors

Pipeline
Length

MuL16/
MUL32

Boolean
Registers

Customization
using A,B,C,D.E,F FIFO Queues
FIFO Queues
Customization
using A,B,C,D.E,F

App. Proc.

Base Proc.

Register File
Storage Tables
tVERIFY HW Insn

Hardware
\Design Flow - tCUFFS

Customization
using A,B,C,D,EF FIFO Queues
o Rase Proc.
‘Q Config. pr——
Customization
using A,B,C

Register File
Design Flow - iCUFFS

App. Proc.

1 ol

Storage Tables
iVERIFY HW Insn
iICHK HW Insn

Fig. 7. The hardware design in the proposed framework

However, not all the indirect CFls may have been executed and

therefore not all the indirect CFls can be resolved throughefile

analysis. Hence the tCUFFS and iCUFFS approaches haveta-limf. Hardware Customizations - tCUFFS

tion that an indirect CFl may not be monitored unless, theiste a
set of particular basic blocks that the indirect CFI can ratr@nsition
to.

E. Instruction Count Analysis - iCUFFS

For the iICUFFS approach, the ‘Instruction Count Analysisige
simply refers to gathering information regarding the numbé
instructions in each BB, which can be obtained by going thhothe
instrumented assembly file. Thus the relevant informatiooua the
number of instructions for iCUFFS is stored in the hardwalglds
of the MONITOR processor. These tables will be used at rumtim
the MONITOR processor for security checking.

For the iICUFFS approach, Simulation Analysis is only neagss
for processors that need to resolve indirect control flowreskes.
The resolution of indirect control flow addresses is donéhingame
way as it is done for tCUFFS as explained in the previous siiose

For the tCUFFS framework, the MONITOR processor is cus-
tomized the same way as the application processors, i.ds it
homogenous to the application processors. The second siage
customization for tCUFFS involves defining custom hardware
structions. The Xtensa LX2 processor allows users to defisécom
hardware using TIE language. For the application processisr
involves just designing a FIFO queue to be able to send traffihe
MONITOR. For the MONITOR, we define the implementation foe th
FIFO queues, aregister file, storage tables and some hadiveac in
the form of tVERIFY instruction. The FIFO queues are desihfar
communication between application processors and the MORI
processor. A custom register file is designed to have fastsacto
data for the hardware instructions. The storage tables sed to
store the control flow graphs and minimum and maximum exeouti
time for each basic block for the programs executing in edche
application processors. The tVERIFY instruction is usegécform
security checks which are discussed in Section VI-C.

PATEL et al: ARCHITECTURAL FRAMEWORKS FOR SECURITY AND RELIABILITY OFMPSOCS 7

B. Hardware Customizations - iCUFFS The encrypted number in the tCUFFB instruction (commueidat
to the MONITOR through FIFO) is decrypted using the hardware
key in the MONITOR. The time (t), processor Id (pld) and thedi

!)c# (bld) information are separated and used to check thelitsali

0

The hardware design flow for ICUFFS is almost entirely simita
tCUFFS as described above except for some minor differermas
the ICUFFS framework, we propose a simple MONITOR process the timing and control flow against the stored informatiorthe
which is different to the application processors, custe@uimndepen- LS ; .

bp P P MONITOR processor. The time information refers to the exiecu

dently by selecting only the features that are needed. Fample, as | ; L .
shown in Figure 7, hardware design flow for iCUFFS, we use on yme of the ba3|.c block bld'. lf the executlgn “T“e of the basiiock
Id is less than its stored minimum execution timerin) or greater

resources A, B and C for the MONITOR. Also iCUFFS has tw
than its stored maximum execution time_(#fax), the appropriate

hardware instructions in the form of iCHK and iVERIFY rathban licati f dt0 by bld int timi
the one in tCUFFS. The design of iCHK and iVERIFY instructon application processors reterred to by pld are interruptetiatiming
error tCUFFS_TIE generated. The control flow check ensures the

is further discussed in Section VI-C. Another minor diffece in ér sition to the current basic block from the previous bdock is
iCUFFS compared to tCUFFS is that the storage tables are u o .
P g veaaﬁ]d and if it isn’t, a control flow errotCUFFS_CFE is generated.

for storing the number of instructions rather than the etienutime)) - .
The system exits once the final processor has finished emacuti

limits of BBs in the application processor.
2) Runtime Functionality - iICUFFSThe iVERIFY instruction
like the tVERIFY instruction is a SIMD hardware instructjomhich
C. Runtime Functionality updates theerror to 1 if any of the processors fail any of the
At runtime, the MONITOR processor in tCUFFS and iCUFF&hecks and also updatdiish to 1 if the application has ended.
performs checks using Algorithm 1 with the exception of ome orhe iVERIFY mstructllon perfor.ms checks for mstrucnonucm and
two lines. The tCUFFS framework does not use lines 9 and f@ntrol flow generating errorsCUFFS_ICE and iCUFFS_CFE
in Algorithm 1 and the iCUFFS framework does not use line 8 ifESPectively as shown in Figure 9.
Algorithm 1.

Algorithm 1 The algorithm employed by the MONITOR for tCUFFS
and iCUFFS

1: Initialize error = 0, done = 0;

2: while ((error == 0) AND (done == 0)) do

iCUFFB/E ###

3: for j=1to N do

4: if (FIFOp, not EMPTY) then

5: Read and Decrypt FIFE Information

6: end if

7 end for Fig. 9. Flowchart of checks performed by iVERIFY in hardware

8: tVERIFY(error, done); / tCUFFS only

9: iVERIFY(error, done); /I iICUFFS only

10: iCHK():; Il iCUFFS only The encrypted information in the iCUFFB instruction is dgxted
11: end while using the hardware key in the MONITOR. The decryption resint

the instruction count (insnCount), processor Id (pld) amel block

We haveN identical hardware units representing tVERIFY instrucl-d (bld) information. The pld information is used to corlgandex

tion for tCUFFS and iVERIFY instruction for iCUFFS for eachtbe the hardware tables of the appropriate application proceshe

N application processors on the MPSoC. TNeidentical repeated |nantogntblnf;)hrmggcl)JnFll':sBu/sEeq t(i Ch$Ck whe;chls r th;ahlnstmcm(c);:ir;t ¢
hardware blocks allow fast computation of terory and donen reported by the | instruction maiches the recor

signals. The overalérror signal is computed based on a logiGR hardware table. The bld information is used to check therobfiow

operation of the individuakrroryx signals and thedone signal is ?fbtlhe ?Epl'ce}t'on tpLO(.:estshor .pld gy mtatchlng ?gggzt':'t:hgi\;h;e
changed to "1’ when the final processor finishes execution. aple. 1he mismatch in the nsnt.ount generates -

1) Runtime Functionality - tCUFFSAs described in Algorithm 1, error. The V|olat|_on in the control flc_)vx_/ generates @. UFFS_CFE
. . error. Once the final processor has finished execution, th&lNIOR
all the FIFOs are checked for data. If the data is available In

any of the FIFOs, it is read and decrypted through the hamwﬁrocess_or ceases execution. . .
instruction tVERIFY. The tVERIFY is &ingle Instruction Multiple _ 1he ICUFFS framework employs another“har_dV\’/,are instruction
Data (SIMD) instructions, which updatesrror to 1 if any of the ICHK which makes the MONITOR processor “active”. The int@in

processors fail any of the checks and also updfitésh to 1 if the architecture of iCHK hardware instruction is shown in FigutO,

application has ended. The tVERIFY instruction performsinig and Which checks for timeout error of application processoitse TCHK

control flow checks for the tCUFFS framework as shown in Fégir instruction generates a time out error sigi@UFFS_TOE if any of
the application processors missed reporting any of thekepemnts.

The iCHK hardware block sends out a sigB8ab all the application
processors and obtains the value of the application procedE.
The iCHK hardware is also aware of the last receil€dwhich is
available inprevIiC and the last received BB information, available
in prevBB. The prevBB is used to index into the instruction count
hardware table and the table entry is compared to the differef
IC and previIC. If the difference is greater than the table entry, a
iICUFFS_TOE-=1 is generated indicating that the application proces-
sor has likely missed out reporting on a check-point due tattack,
Fig. 8. Flowchart of checks performed by tVERIFY in hardware otherwiseiCUFFS_TOE=0 is generated.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SSTEMS, VOL. X, NO. X, JUNE 2010

; ; ; ; BB type (1)
. App | App | i\ App iCUFFB 6079 BB type (2)
| Proc1 | Proc2 | | Proc N - movi.n all, 1
| | | | L3: iCUFFB 6302 L4: iCUFFB 6522
R Rt S addin all,al0, 1 ovi 18ui a8,al0,0
412 c il s c IC i | / .mow.n a6, 0 \
T T T T =~ [i |z iCUFFE 6079
[l ol e S ‘E mull a9, alo, all callg fread xor a7, a7, a8
5 > H0797074] Shared <) beqz a5, L4 bne as, a6, L4
® R 01010111 | Memory o
,,,,,,,,,, MONITOR T ! (a) original code segment
SignalI,—""'

T
Signaly Insn Count IC,
OnaiN- 1SN Table 5

prevBBy 1011 (ICN - prevICy) > TOEx
0101 | tab_ICy tab_ICy

prevICN‘

(b) Possible Attack 1 (c) Possible Attack 2

Fig. 12. Possible attacks on BBs in iCUFFS
Fig. 10. The hardware logic for the iCHK instruction

MONITOR detects through the iCHK unit that a “check-pointasv
missed. Similar result would be achieved for BBs of type () i
In this section, we discuss how the tCUFFS and the iCUFHSgures 11(a) and 12(a), when attacked with attack code rshiow
architectural frameworks can be used for the protectiomdi®@SoC Figures 11(b) and 12(b) respectively.
system. Errors are indicated usitGUFFS_TIE (Timing Error), Now we consider the type of attack shown in Figures 11(c) and
tCUFFS_CFE (Control Flow Error) for tCUFFS antCUFFS_CFE 12(c) on BBs of types (1) and (2) in Figures 11(a) and 12(agreh
(Control Flow Error),iCUFFS_ICE (Instruction Count Error) and the attack code does communicate to the MONITOR. We can sg¢e th
iCUFFS_TOE (Time Out Error) for iCUFFS. If any of these arethe attack block contains the corr¢é@UFFB andiCUFFB instruction
active, the execution of all the application processorshenMIPSoC types to be able to attack the basic blocks wBilD 6079 and 6522
is aborted. The MPSoC security is said to be compromisedyifodin in Figures 11(a) and 12(a) respectively. However, becabeeSID
the application processors is under attack. number is encrypted, the MONITOR will caus¢@UFFS_CFE for
The tCUFFS and the iCUFFS framework monitor for security aCUFFS andCUFFS_CFE for iCUFFS when theSID is decrypted
the BB level. If we can ensure that each BB execution was cbrrao an unknown value that will cause the control flow check b fa
in terms of the properties for it is being checked, we canagdiate ~ When a BB of type 3 faces the attack scenarios mentioned above
that the entire program execution was correct for those gutigs. it would behave similarly to that shown by a BB of type 2. Botpd
We classify the BBs into three types: (1) ending in a systeln @ 2 and type 3 BBs have only oni€UFFB or iCUFFB instruction per
ending in a CFl; and (3) ending in neither a system call nor & CHBB, which is the first instruction in that BB.
We show in this section that tCUFFS and iCUFFS are able tactlete |n an MPSoC architecture, there is often inter-processamnco-
the attacks for each of the three types of BBs and hence s#uaire nication because of an application executing on multiplecgssors.
application. An encryptedSID, comprising of a processor ID and a basic block ID
We now discuss how the tCUFFS and the iCUFFS frameworkgas discussed earlier in Section V. Encryption of SID is intguat
would respond to attacks. Figure 11(a) and Figure 12(a) show to prevent information leakage through bus monitoring (ohehe
example of a code segment in tCUFFS and iCUFFS respectivetypes of side-channel attacks) during inter-processomeonication.
Figure 11(b) and Figure 12(b) show an attack where the attagking bus monitoring, an attacker may be able to reconsthet
code does not communicate to the MONITOR and Figure 11(c) aadntrol flow of the program on different application proass With
Figure 12(c) show an attack where the attack code does coinaten an encrypted SID, the attacker would not be able to decipher t
to MONITOR usingtCUFFB andiCUFFB instructions respectively. processor number and the basic block number and hence temins
the control flow. Moreover, the same bus used by all the agiidio

VIl. SYSTEM PROTECTIONMECHANISMS

BB type (1) :)
B8 type (2) processors to communicate to the MONITOR further compigat
tCUFFB 6079 . . .
13: tCUFFB 6302 movin a1l 1 L4 tCUFFB 6522 deciphering the processor number and basic block nhumber e
A ELEOL e w6a N B a0 encrypted SID obtained from bus monitoring.
mull a9, al0,all callg fread xor a7, a7, a8

beqz a5, L4 bne a5, a6, L4

VIII. EXPERIMENTAL RESULTS

We tested the tCUFFS and the iCUFFS architectural framework
using Xtensa LX2 processor from Tensilica Inc. The framéwor
was tested using three multiprocessor multimedia bendts(@PEG
Encoder, MP3 and JPEG Decoder) of varying complexities.s&he
multiprocessor benchmarks were obtained from the authbfS0d
and [51] who had previously partitioned these benchmarkegus
Fig. 11. Possible attacks on BBs in tCUFFS Tensilica toolset. The details of the processor cores dedigor

testing each of the three benchmarks is shown in Table I.

Consider a scenario when BBs of type (1) in Figures 11(a) andThe first column of Table | shows the benchmark that was tested
12(a) are attacked by attack code shown in Figures 11(b) aflm) 1 The second column states the type of processor, either dgtjan
respectively. The attack would only be detected in tCUFR&ice (App) or MONITOR (MON). The third column states the number
atCUFFS_TIE error when the next communication to MONITORof application processors or MONITOR processors in the MPSo
takes place. However, for iCUFFS, there ilC&FFS_TOE because system. The fourth column lists the type of technology used f
the BB withSID 6522 was supposed to follow the BB wiiD 6079. each of the processor cores. The fifth and the sixth colunmats st
Since the attack code does not communicate to the MONITOR, tthe individual core speed for tCUFFS and iCUFFS respegtivigie

(a) original code segment

(b) Possible Attack 1 (c) Possible Attack 2

PATEL et al: ARCHITECTURAL FRAMEWORKS FOR SECURITY AND RELIABILITY OFMPSOCS 9

TABLE |

PROCESSOR CORE CONFIGURATIONS FORPSOCS = ICUFFS ®iCUFFS

40

30
Bench-| Proc.| No. of| 1€¢M- Speed Power

% Increase in Code Size

nology| (M H=z) (mW) 20 4
mark | type | Proc. | N HCUFFSIICUFFS[ICUFFS ICUFFS
JPEG[App.] 6 | 130] 303 303| 333.0p 33548 10 4
Enc. [MON[1 | 130 | 303 332 | 55.51 40.5] .
Mp3 | APP-| 5 90 533 533 | 673.05 67/8.35 1PEG Enc. MP3 IPEG Dec.
MON| 1 90 | 533 585 | 134.6] 93.34 Benchmarks
JPEG|App.| 5 90 | 533 533 | 632.25 637.95 (a) Code Size
Dec. [MON| 1 90 | 533 585 | 126.4%5 93.3

W tCUFFS miCUFFS

40
seventh and the eight columns outline the power statisticK fUFFS
and ICUFFS respectively. In the case of application typegssors
the power figures are a collective statistic for all the aggilon
processors on the MPSoC, whereas for the MONITOR proceksor t
power refers only to the one MONITOR on the core.

30

20

% Increase in Area

10

We investigated two types of designs for the MONITOR in tCI3FF o IPEG Enc. s 1PEG Dec.
and iICUFFS frameworks. In the tCUFFS framework, we used a Benchmarks
MONITOR that was similar to the application processors oa th (b) Area

MPSoC, where as in iCUFFS framework we used a MONITOR' ' _
that was heterogeneous to the application processors by esily Fig. 14. Percentage Inc. in Code & Area for tCUFFS & iCUFFS
the minimal required features. Table | shows that this sapaser

because the total power for iCUFFS for all the benchmarksviet

than the total power for tCUFFS. For example the JPEG Encoo%frgea IS achleveq ;na'r;ly Eecausg 'CdlfJFFS employs astlep]ENSM
benchmark, total power consumption of MPSoC, for tCUFFS E— R processor with only the required features compareGUWHFS.

388.57mW and for iCUFES is 376.1IV. The iCUFFS framework It should be noted that we have not accounted for the comratioic
also has a higher frequency for the MONITOR compared to t tween the application processors and the MONITOR in oea ar
{CUFFS framework and this is again a result of using a simplg timation. It is difficult to estimate the area for the commination
MONITOR. This would allow the FIFO communication from the® annels at this high level of abstraction without resgrtio place
application processors to be processed at a faster ratengasé the and route methods.

MONITOR processor was clocked separately. IX. RELIABILITY ANALYSIS

A. Performance Impact According to the studies on reliability by Schutte et al. 52]

' and Ohlsson et al. in [53], between 33% and 77% of all tramsien
from the tests on the multimedia benchmarks are shown in€i§8. transjent bit flips. The ICUFFS framework was tested for clitg
The JPEG encoder benchmark has performance overheadssof &t errors in the CFls. Section IX-A details the analysighod and
than 1% whereas the MP3 and the JPEG decoder which are mgigy|ts achieved by the iCUFFS framework. A modified versién
complicated benchmarks have higher performance overheads the iCUFFS framework is proposed in Section IX-B to ensulielske

Figure 13 clearly shows that the performance overheadstirgsu inter-processor communication.
from the ICUFFS framework are slightly higher than the tCI3FF
(which has the least performance overhead among previqusky A
Essadpsn;?g d;o:/\r/]e\gg] f;ng”;ﬁ]y L?ghiftzzt:%?miﬂxag;g:#k. We testgd the tCUFFS and iCUFES frgmeworks for detecting bit
iCUFFS provides a security framework that checks everyleitige 1P €rrors in the CFls. We test for bit flips in the CFls that nagur
of code and has an “active” MONITOR to be able to detect [the instruction memory of an MPSoC system. Every progesso

greater range of attacks than the tCUFFS framework as thescri &0 MPSOC for a particular benchmark was injected with a seteu
in Section VII of faults. The faults in the form of bit flips were injected imetCFIs

and it was noted whether the bit flip was detected or not by the
) MONITOR processor.
B. Area and Code Size Overheads Table Il shows the analysis of the fault injection tests oohea
The code and area overheads incurred in the MPSoC systero dueft the three multimedia benchmarks. The first column shoves th
the tCUFFS and iCUFFS frameworks are shown in Figure 14(d) abhenchmark and the processor. The second, third and foultinos
Figure 14(b) respectively. iCUFFS has a higher percentdgmae show respectively the number of function/library call, fch and
overhead compared to tCUFFS (which again has the least ambunjump instructions selected for injecting faults. The fifdluumn shows
code overhead among previously proposed methods in [19]3}d the total number of control flow instructions that the faulisre
for detecting software attacks on MPSoCs) as shown in Fifjd(a). injected into. The sixth column shows how many of the faults i
The higher code overhead in iCUFFS is a result of employing twthe fifth column were detected and the seventh column shows th
special instructions per basic block when a basic block ends percentage of faults detected.
system call compared to just one in tCUFFS. Each benchmark was injected with 100 faults or errors. For
The iICUFFS framework, however, has a lower percentage af arexample, in the JPEG Encoder benchmark, four processore wer
overhead than tCUFFS as shown in Figure 14(b). A lower péagen injected with 17 faults and two processors were injectech vii6

. Fault Injection Analysis

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SSTEMS, VOL. X, NO. X, JUNE 2010

37.5 43.9

mtCUFFS miCUFFS
24

20

16

12

% Increase in Runtime Overhead

0.4 0.67 0.420.68 0.4 0.68 0.450.79 0.360.71 !
0 T T T T T '
grandmom mom mom-daughter garden tennis | music . galois pattern pip
i i
JPEG Encoder MP3 JPEG Decoder
Benchmarks

Fig. 13. Performance Overheads for tCUFFS and iCUFFS

faults to get a total of 100 faults. In each of the benchmathks, currently instrumented. System library can also be insémned in
CFI and the bit in the CFI, where the fault is to be injected wathe future to provide detection of software attacks and imteftrors.
selected at random. Each procesidnas a certain number of CFIsIn some cases, if the fault injected only changes the opcdde o
represented by’ F'I.. So random numbers were generated betweémstruction to another valid opcode, the fault would not letedted.

1 andCFI; for eachk. These numbers were used to identify th&he fault is not detected because the control flow remaingl val
CFl in which the fault was to be injected. To determine, whitith although the execution is incorrect. For example, if a bjit éhanges
of the instruction was to be corrupted, again a random numiasr the opcode referring tbeq instruction tobne, the next basic block
generated between 1 and 16 or 1 and 24 depending on whetherakecuted, although incorrect, is still valid in terms of tuantrol flow.
instruction was 16 or 24 bits long. A majority of the undetected faults simply do not lie on the@xtion

path and hence go undetected.
TABLE Il

RESULTS FROMFAULT INJECTION FOR CUFFSON BENCHMARKS . . .
B. Reliable Inter-Processor Communication

The architectural framework proposed earlier in Sectionchh

Processor Func/ |Bra-, ., To-|Dete4 % Det- be used to achieve soft error detection to ensure religbdit
Lib Call [nch tal |cted | ected . . . L .

e e inter-processor and inter-chip communications. Howegeminor
PTRead File 9 v T 17 11 64] modification is necessary to facilitate this and achieve busb
P2RGB Convert - ~ 1~ "0 T 714~ 37 "1f 16~ ~94. framework that can detect soft errors or intentional tarmgewith
P3DCT2 ~~ ~ ~ ~] 27 T7115/ 0] 17 "17|_ 100 the communicated information between two processors quschi
P4.Quantization _ _ | 8 | 8| 1] 1 13 764 1) Append an encrypted checksum to the encrypted informatio
P5:Huffman 0 14| 2] 16 9 56.3 . . .
P6:Outputto Fle” ~ 1~ 11 1 5|~ 07 16 ~ 8|~ ~ 50 SIDthat is being communicated from one processor to the other
Total ~ T T T 7 ~30 183~ 771100 73~ 72 or one chip to the other.
MP3 2) Decrypt the checksum and the information and then confirm
PLRead File | 14 1 6/ 0] 2p 10 50 that the checksum is valid.
P2:Polyphase Filtering 10| 9 1] 30 18 _ 9 We implemented the above modifications to the iCUFFS frame-
P3:Polyphase Filtering 9 10 1 20 1B 90 . s
PAMDCT -~~~ 9" 191" 373 15|~ ~s0 work. The checksum is encrypted and appended to the infamhy
P5:Quantizafion, Ene-| ~ ~ " T~ |- 1T~ |~~~ the sender processor and also decrypted and extracted bgcisieer
oding, Writeback | 7 | 11 2| 2p 13 65 processor in hardware. The area overheads shown in Figyly 14
Total 49 [45| 6 [10p 75 75 increased by less than 1% for all the benchmarks. The codbeags
JPEG Dec. remained the same as shown in Figure 14(a). The code overhead
gégz?r?gand Entropy a |1l 2l o0 1l ss do not change because no extra software instructions wetedatt
P2:Dequantiz, OCTfF~ ~ "1~ |~ T1- [~ |~~~ facilitate the checksum calculation or communication.
Y,Cb,Cr and Level Shift 6 11 3| 2p 14 70 The performance overheads further increased by negligible
P3:Dequantiz, IDCT fqr —— [| [[| amounts in JPEG Encoder, approximately 0.5% in MP3 and droun
\Ff_f%gfm_‘tj__'-%")eé_f_ff“f_ _9l_9_2] 2 18 90 4% in JPEG Decoder. The graph in Figure 15 shows the number of

-Dequantiz, aqr : : s H : H iR
Y.Cb,Cr and Level Shift 13 sl a4l 2b 11 55 Flmes the runtime of the modl_fled |Cl_JFFS (with reliabilitympach)
PE:Color Space Corvl ~ ~ ~ T~ |-~ T~ 7|~~~ increases when compared with the ICUFFS approach alone.
ersion, Write Back 9 9 2| 20 15 75
Total — ~ ~ T T 7| T 41 | 46| 137 10D 69| 69 X. DISCUSSION

We employ a dedicated processor in an MPSoC architecture for
Table Il shows that 74%, 75% and 69% of the injected single-tBecurity purposes. Such a configuration allows for flexipilin
errors in the JPEG Encoder, MP3 and JPEG Decoder benchmaties design process, where security is often an after thouige
were detected in our MPSoC system by either the ISS (when thexibility arises due to the fact that the MONITOR can be addp
changed instruction does not exist in the instruction setthe independently of the application processors. If the cushamware
MONITOR at runtime. It should be noted that the CFls in theerys was designed as a functional unit for each processor, theh ea
library functions were not tested for fault injection asythere not processors functional unit would need to be changed if thaee

PATEL et al: ARCHITECTURAL FRAMEWORKS FOR SECURITY AND RELIABILITY OFMPSOCS 11

1.043

1.040

B. Applications and Future Work

1.030

The work discussed in this paper has applicability in modern
architectural designs. Although we presented a framewandjeting
security of MPSoCs in this paper, our work is also relevant in
automotive and control systems industries, where hard efidreal
time embedded systems are important.

Future work will look at ways to reduce the overheads in theie-
work. A better static analysis of the code can result in iifging
potential point of attacks in the code and then just instmting
them rather than the entire code. Another possibility ofuoiug
the performance overhead is to pre-compute a hash funatiothé
program counter (PC) and instruction memory (IR) and stoeehish
function for verification at runtime. However, to performshing

1.020

1.010

1.000

1.000 1.000 1.000 1.000

1.000

Runtime Increase (x)

0.990

0.980

0.970 4 ¢
mom-daughter garden tennis ! music i galois

JPEG Encoder MP3
Benchmarks

grandmom mom pattern pip

JPEG Decoder

Fig. 15. Increase in Runtime Overhead for iCUFFS with rdliigtapproach
compared to iCUFFS only

any changes in the design. This is often an expensive egeirtian

ASIP based des'gn') . .. at runtime, access to PC and IR may be required, which may be
Related work like CCured in the ::,lngle processor domaindgiel - ~i-bie for commercial Processors.

performance overheads of up to 150%. The frameworks ICURBS a The significant area overhead on the MONITOR can be avoided

|Cl:1|_:|;S ffor nfwultlprocessor rc]ion:jam,f |gé:omsar_:_shon, fachleb_eua by using one of the application processors as a MONITOR. Fer t
a third of performance overheads o ured. Therefore, sigh tCUFFS framework, using one of the application processeraa

2erforme_ince Of\f/ erhefa(:]s are comrr‘n onin the_ re_se;rch a(r:)eaunrftysec MONITOR is straight forward because all the processorsuitiog
conscious effort of the research community Is directe®a®ting . \ONITOR possess a similar configuration. However, fa th

these overheads but it is likely to take some time.] ICUFFS framework, the MONITOR must be designed keeping in
Our frameworks can also handle the case when the executian gf,ing the application that will run on the MONITOR.
basic block is interrupted in a program. A new signal caffiediuct
can be used to identify whenever an interrupt occurs befdrasic
block has finished execution. The number of cycles or insbas
executed in the interrupt service handler (ISH) can be dmzbhby
getting the first and the last instructions of the ISH to rddbe value
of the Cycle Count (CC) register for tCUFFS or Instructionu@b
(IC) register for iICUFFS. Hence the number of executed sycle
instructions in ISH can be calculated and stored e.g., in SODUSH.

Thus, in the case ofleduct signal being active, the application |, this paper, we presented two architectural framewoBEIRFS
processor communicates to MONITOR the (CC - COUMH) ang iCUFFS, for protecting against software attacks. Bdth t
value for tCUFFS or (IC - COUNIISH) value for iCUFFS. In the frameworks, tCUFFS and iCUFFS, used a dedicated processor f
normal case, when there is no interrupt, teluctsignal would be getecting software attacks to detect violations in corfimk of the
low and the CC or IC value would be communicated. Contextgavi gppications. Additionally tCUFFS and iCUFFS respeciivebed the
on the stack is commonly used for nested interrupts. The¥efa execution time of basic blocks and instruction count of désdcks
the case of nested interrupts, the deduct signal as wellea§aB - 1 getect software attacks. We have presented an analysishibws
COUNT_ISH) or the (IC - COUNTISH), can be stored on the stack.ihat our framework can ensure secure execution of programs.
Finally, the count value before the start of the nested iinfy the Our results showed that iCUFFS had slightly higher runtime
count value during the execution of nested interrupt; ardabunt penalty and area overhead compared to tCUFFS. We showed that
value after the execution of nested interrupt should beraatetd from 0 iCUFFS framework can be used to detect bit flip errors & th
CC (for tCUFFS) or IC (for ICUFFS). control flow instructions and the tests indicated that agipnately
Although we have implemented our framework on Xtensa LX209 of such errors are detected. Finally a modified versiothef
processor from Tensilica Inc., the simplicity of algoritimMON- jcUFFS framework was proposed to ensure reliable intecgssor
ITOR and the simplicity of custom hardware means that theéa or inter-chip communication. We believe that our frameveodre
work can be easily adapted for other MPSoC architectures. %alatﬂe and genera| enough to be app“ed to other pro&@nr
framework can be scaled to larger systems with many apfitat detection of software attacks in MPSoCs.
processors by employing a greater number of MONITOR praress
keeping in mind the performance and area constraints of tR8dC
design.

Furthermore, a new “symbiosis” architecture can be deveezh
that two or three processors on the MPSoC can be groupecharget
Each processor verifies the execution of one of its felloncessor
in the group. The symbiosis architecture nullifies the need &
MONITOR hence reducing the area overhead.

Xl. CONCLUSIONS

REFERENCES

[1] J. Park, H. Song, S. Cho, N. Han, K. Kim, and J. Park, “A taake
media framework for asymmetric mpsoc,” i8BORC '06 Washington,
DC, USA: IEEE Computer Society, 2006, pp. 205-207.

M. Loghi, M. Poncino, and L. Benini, “Cycle-accurate pemanalysis
for multiprocessor systems-on-a-chip,”@LSVLSI '04 NY, USA, 2004,
pp. 410-406.

[3] W. Wolf, “The future of multiprocessor systems-on-chipin DAC '04,

New York, NY, USA, 2004, pp. 681-685.

A. Limitations 2l
The limitations of tCUFFS and iCUFFS approaches are aswstlo

1) Since our approach provides security solution at theujaaity
of a basic block, the runtime penalty of the system is depende

2)

3)

on the size of the basic blocks.) o [4]
The control flow transitions of the basic blocks with iredit
addressing should be deterministic at compile time or from aldl

execution profile analysis.) 6]
Our work does not cover data corruption, or any other fofm o

attacks like physical or side-channel attacks.

K. Bhattacharya, S. Kim, and N. Ranganathan, “Improuing reliability
of on-chip 12 cache using redundancy,” Oct. 2007, pp. 229--22

S. Raviet al, “Security in embedded systems: Design challenga€M
Trans. Embedded Comput. Sysbl. 3, no. 3, pp. 461-491, 2004.

J. Coburn, S. Ravi, A. Raghunathan, and S. ChakradhacdSsecurity-
enhanced communication architecture,"GASES '05 New York, NY,
USA: ACM, 2005, pp. 78-89.

12

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SSTEMS, VOL. X, NO. X, JUNE 2010

R. G. Ragel and S. Parameswaran, “Hardware assistec@npptive
control flow checking for embedded processors to improvialiity,”
in CODES+ISSS '06 New York, NY, USA: ACM, 2006, pp. 100-105.
D. Dagon, T. Martin, and T. Starner, “Mobile phones as pating
devices: the viruses are comingEEE Pervasive Computing/ol. 03,
no. 4, pp. 11-15, 2004.

M. Hypponen, “Malware goes mobileScientific Americanvol. 295,
no. 5, pp. 70-77, 2006.

A. Raghunathan, S. Ravi, S. Hattangady, and J.-J. Qatsg “Securing
mobile appliances: new challenges for the system desigmekTE,
2003 pp. 176-181, 2003.

J. Pincus and B. Baker, “Beyond stack smashing: Recédwarees in
exploiting buffer overruns,1TEEE Security and Privagyvol. 2, no. 4,
pp. 20-27, 2004.

J. Nelil3en, “Buffer overflows for dummies,”
(http://lwww.sans.org/readingoom/whitepapers/threats/481.php),
2002.

R. G. Ragel, “Architectural support for security andiakility in em-
bedded processors,” Ph.D. dissertation, School of CSE,WN&/dney,
Australia, 2006.

K. Bhattacharya, S. Kim, and N. Ranganathan, “Imprgwine reliability
of on-chip 12 cache using redundancy,” Oct. 2007, pp. 228--22

C. Constantinescu, “Trends and challenges in visiutirceliability,”
IEEE Micro, vol. 23, no. 4, pp. 14-19, 2003.

S. K. Reinhardt and S. S. Mukherjee, “Transient faultedgon via

simultaneous multithreading,” iRroceedings of the 27th annual inter- [41]

national symposium on Computer architecturédCM Press, 2000, pp.
25-36.

R. W. David Lammers, “Soft errors become
truth for logic,” EE Times 2004. [Online]. Available:
http://www.eetimes.com/showAtrticle.jhtmli?article| D8400052

G. C. Necula, S. McPeak, and W. Weimer, “Ccured: typfe-satrofitting
of legacy code,” irPOPL '02 New York, NY, USA, 2002, pp. 128-139.
K. Patel, S. Parameswaran, and S. L. Shee, “Ensuringresegro-
gram execution in multiprocessor embedded systems: a ¢adg,’s
in CODES+ISSS '07: Proceedings of the 5th IEEE/ACM intermetio
conference on Hardware/software codesign and systemesiathNew
York, NY, USA: ACM, 2007, pp. 57-62.

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beathi. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatiaptite
detection and prevention of buffer-overflow attacks,” Rroc. 7th

USENIX Security ConferenceSan Antonio, Texas, Jan 1998, pp.[45]

63-78. [Online]. Available: citeseer.nj.nec.com/cowdstickguard.html
N. Dor, M. Rodeh, and M. Sagiv, “Cssv: towards a reatisthol for

statically detecting all buffer overflows in c,” IRLDI '03, NY, USA,

2003, pp. 155-167.

D. Larochelle and D. Evans, “Statically detecting likebuffer

overflow vulnerabilities,” 2001, pp. 177-190. [Online]. adlable:

http://www.usenix.org/events/sec01/larochelle.html

R. Rugina and M. Rinard, “Symbolic bounds analysis ohpers, array
indices, and accessed memory regions,PIDI '00. New York, NY,

USA: ACM, 2000, pp. 182-195.

J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “Its4: Aast

vulnerability scanner for ¢ and c++ code,” XCSAC '00 Washington,
DC, USA: IEEE Computer Society, 2000, p. 257.

J. Mcgregor et al, “A processor architecture defense againsf49]

buffer overflow attacks,” 2003, pp. 243-250. [Online]. Ashie:
http://ieeexplore.ieee.org/xpls/alal.jsp?arnumber=1270612

0
D. Aroraet al, “Secure embedded processing through hardware-assist[ed
run-time monitoring,” iInDATE '05 Washington, DC, USA, 2005, pp. [51]

178-183.

M. Milenkovic, A. Milenkovic, and E. Jovanov, “Hardwarsupport for
code integrity in embedded processors,JASES '05NY, USA, 2005,
pp. 55-65.

R. G. Ragel and S. Parameswaran, “Impres: integrateditaring for

processor reliability and security,” iDAC '06, New York, NY, USA,
2006, pp. 502-505.

N. Nakka, G. P. Saggese, Z. Kalbarczyk, and R. K. lyen &chitectural
framework for detecting process hangs/crashesEICC, ser. Lecture
Notes in Computer Science, M. D. Cin, M. Kaniche, and A. Retar
Eds., vol. 3463. Springer, 2005, pp. 103-121. [Online]. ilakde:

http://dblp.uni-trier.de/db/conf/edcc/edcc2005. HthdkkaSKI05

L. Wang and R. K. lyer, “Count&check: Counting instrigets to detect
incorrect paths,” inMorkshop on Compiler and Architectural Techniques
for Application Reliability and Security (CATARZ)008.

[32]

(33]

[34]
[35]

[36]

[37]

(38]

[39]

hard[42]

[43]

[44]

[46]

[47]

[48]

[52]

(53]

[31] K. Patel and S. Parameswaran, “Shield: A software hardwdesign

methodology for security and reliability of mpsoc®gsign Automation
Conference, 2008. DAC 2008. 45th ACM/IEFIp. 858-861, June 2008.
V. Narayanan and Y. Xie, “Reliability concerns in embed system
designs,”"Computer vol. 39, no. 1, pp. 118-120, 2006.

S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Radi system
design with built-in soft-error resilienceComputer vol. 38, no. 2, pp.
43-52, 2005.

D. Siewiorek and L. K.-W. Lai, “Testing of digital systes,” in Pro-
ceedings of the IEEEvol. 69, no. 10, 1981, pp. 1321-1333.

D. Siewiorek and R. SwarzZTheory and Practice of Reliable System
Design Digital Press, 1982.

P. Hazucha and C. Svensson, “Impact of cmos technologling on the
atmospheric neutron soft error ratdlliclear Science, IEEE Transactions
on, vol. 47, no. 6, pp. 2586-2594, Dec 2000.

C. Hescott, D. Ness, and D. Lilja, “Scaling analyticabdels for soft
error rate estimation under a multiple-fault environnfeAtig. 2007,
pp. 641-648.

iRoC Technologies, “New trends and solutions to combaft error
threats to nanometer semiconductors,” White paper, iRo&hri@ogies
Ltd., February 2004.

T. Semiconductor, “Soft errors in electronic memory white paper,”
White paper, Tezzaron Semiconductor, January 2004, alailanline
(7 pages).

A. Avizienis, “The n-version approach to fault-toletasoftware,”|IEEE
Trans. Softw. Engvol. 11, no. 12, pp. 1491-1501, 1985.

A. Hopkins, T. Smith, and J. Lala, “Ftmp - a highly reliabfault-tolerant
multiprocessor for aircraft (1978)Proceedings of the IEEEoI. 66, pp.
1221-1239, October 1978.

G. Reis, D. August, R. Cohn, , and S. Mukherjee, “Sofevdault
detection using dynamic instrumentation,”BARC '06: Proceedings of
the Fourth Annual Boston Area Architecture WorkshBpbruary 2006.
S. Bagchi, V. Liu, K. Whisnant, Z. Kalbarczyk, R. K. lyeY. Levendel,
and L. Votta, “A framework for database audit and control fldvecking
for a wireless telephone network controller,”X8N '01: Proceedings of
the 2001 International Conference on Dependable Systenhdlatworks
(formerly: FTCS) Washington, DC, USA: IEEE Computer Society,
2001, pp. 225-234.

B. Ramamurthy and S. Upadhyaya, “Watchdog processsisted fast
recovery in distributed systems,” iRifth IEEE Int'l Working Conf.
Dependable Computing for Critical Applications IEEE Computer
Society Press, September 1995, pp. 125-134.

T. Michel, R. Leveugle, and G. Saucier, “A new approazicdntrol flow
checking without program modification,” ifiwenty-First International
Symposium on Fault-Tolerant Computing. FTCS<Rine 1991, pp. 334—
341.

D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “Affstep towards
automated detection of buffer overrun vulnerabilities1”"Network and
Distributed System Security Symposiji8an Diego, CA, February 2000,
pp. 3—17. [Online]. Available: citeseer.nj.nec.com/waxg®first.html

Y. Younan, W. Joosen, and F. Piessens, “Code injectidd and C++: A
survey of vulnerabilities and countermeasures,” DepagtenComput-
erwetenschappen, Katholieke Universiteit Leuven, Teatp.RCW386,
Jul. 2004. [Online]. Available: citeseer.ist.psu.edufyanO4code.html
G. E. Suh and S. Devadas, “Physical unclonable funstifam device
authentication and secret key generation,”DAC '07. New York,
USA: ACM, 2007, pp. 9-14.

C. Rowen and D. Maydan, “Automated processor generdtio system-
on-chip,” Tensilica Inc., Tech. Rep., Sept 2001.

] S. L. Shee and S. Parameswaran, “Design methodologyifmlined

heterogeneous multiprocessor system.DikC, 2007, pp. 811-816.

J. Wong, A. Ignjatovic, and A. Janapsatya, “Multipreser implemen-
tation of image compression algorithms,” BE Thesis, School of CSE,
The University of New South Walez007.

M. A. Schuette and J. P. Shen, “Processor control flowitoong using
signatured instruction streams$EZEE Trans. Computvol. 36, no. 3, pp.
264-276, 1987.

J. Ohlsson, M. Rimn, and U. Gunneflo, “A study of the effeof
transient fault injection into a 32-bit risc with built-in aichdog.” in
FTCS 1992, pp. 316-325.

