
1

Multiprocessor Information Concealment

Architecture to prevent Power Analysis based

Side Channel Attacks
Jude A. Ambrose† Roshan G. Ragel‡ Sri Parameswaran† Aleksandar Ignjatovic†

†School of Computer Science and Engineering,

University of New South Wales, Sydney, Australia

{ajangelo, sridevan, ignjat}@cse.unsw.edu.au
‡Department of Computer Engineering,

University of Peradeniya, Sri Lanka

roshanr@ce.pdn.ac.lk

Abstract

Side channel attackers observe external manifestations ofinternal computations in an embedded

system to predict the encryption key employed. The ability to examine such external manifestations

(power dissipation or electromagnetic emissions), is a major threat to secure embedded systems.

This paper proposes a secure multiprocessor architecture to prevent side channel attacks, based on a

dual-core algorithmic balancing technique, where two identical cores are used. Both cores use a single

clock and encrypt simultaneously, with one core executing the original encryption, while the second

executes the complementary encryption. This effectively balances the crucial information from the power

profile (note that it is the information and not the power profile itself), hiding the actual key from the

adversary attempting an attack based on Differential PowerAnalysis (DPA).

The two cores normally execute different tasks, but will encrypt together to foil a side channel attack.

We show that, when our technique is applied, DPA fails on the most common block ciphers, DES and

AES, leaving the attacker with little useful information with which to perpetrate an attack.

Index Terms

Side Channel Attack, Multiprocessor Balancing, Power Analysis
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I. INTRODUCTION

The explosion of embedded systems and their resulting ubiquity is a cause for their frequent use in

secure transactions. Thus researchers have begun to investigate secure techniques to prevent confidential

data transmissions being accessed by an adversary. Side Channel Attacks (SCAs) are a security threat

to embedded systems, where adversaries eavesdrop on external manifestations like power usage [1, 2],

processing time [2, 3] and electro-magnetic (EM) emission [4] from the device and correlate these

properties with internal computations, obtaining critical information to predict the key. These techniques

have been shown to reveal the secret keys of cryptographic programs like DES, AES, RSA and SEAL

[2]. Power analysis has been the most extensively used Side Channel Attack technique to extract secret

keys during the execution of cryptographic algorithms [1, 5, 6].

There are two key power analysis methods: (1), Simple Power Analysis (SPA), which reveals direct

information about the data being executed; and (2), Differential Power Analysis (DPA), which requires

multiple power traces to perform statistical analysis to predict the data used in computations [2]. There

are several SPA models used in the literature to attack the key from a single (or few) traces. One such

model [7] predicts the Hamming weights (i.e., number of 1’s set in the output) of a computed data

using the power magnitude, based on the hypothesis that the higher the Hamming weight, the higher the

power magnitude [8]. Another model exploits the conditional branches to identify the data used by the

conditional statements in the code. For example, the attacker would simply distinguish the square and

multiply patterns of the RSA from the power profile [9]. TheseSPA models allow an attacker to guess the

correct key more quickly, than if he/she were to use brute force. DPA is a more powerful technique than

SPA, which is based on the hypothesis that there is a significant difference in the power consumption in

processing 1’s and 0’s [2]. Fig. 1 depicts a brief overview ofa DPA, where the adversary feeds several

inputs to the chip and records the power traces. Several guesses of the encryption key are made. For each

of the key guesses the output power traces (of several separate inputs) are separated into two, depending

upon whether we expect the output to be a “1” or a “0” as shown inFig. 1. The difference between

the averages of these sets is known as the DPA signal (also known as DPA bias signal). A peak in this

DPA signal trace, which is plotted against possible key guesses, will reveal the correct key. In Advanced

Encryption Standard (AES [10]) encryption, the most commonly exploited intermediate bit for the DPA

attack is one of the output bits from an SBOX [11]. Further references about DPA can be found in [2,

5].

Such successful DPA attacks [2, 5, 6, 12, 13] prove that bit-flips caused by secret keys enforce
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significant variation in the dissipated power sequence. Executing a program with the complementary

algorithm will produce complementary bit-flips, with the original algorithm (e.g., bit-flip 1→ 0 will

correspond to bit-flip 0→ 1). Therefore, if we execute both the original and complementary encryptions

simultaneously, the information on the power profile due to bit-flips of the secret key will cancel out.

Note that the power profile itself will be the addition of bothcores. Specifically, it is the correlation

between the critical information and the power profile that we mask. Thus it is not our intention to have

a flat power profile, but a power profile which is absent of information containing the encryption key.

The plethora of embedded systems containing multiprocessors such as cell phones, PDAs, gaming

consoles, audio players, video recorders and video cameras[14–16] motivated the use of one in-built

core of a multi-core processor to function as a balancing unit, countering the real effects caused by the

secret key in the power profile.

In this work, we have implemented the proposed balancing technique on a dual-core multiprocessor.

The two cores of the processor generally execute independent tasks (or threads), but when one core starts

to execute the encryption algorithm, the second core automatically starts the complementary encryption

program. Note that the second core is used for balancing onlywhen there is an encryption algorithm

running on the first core.

Part of this work was presented at ICCAD (2008) [?], where the balancing mechanism for AES was

explained. This journal generalizes the balancing mechanism by enforcing it to DES and AES. The

balancing control and switching mechanisms are presented in detail.

Motivation

Significant variation in the dissipated power sequence, dueto the bit-flips occurring while processing

encryption keys, enable power analysis attacks. Balancingthese bit-flips would mask the correlation

produced by the actual key. However, previous balancing techniques [17–22] used complementary logic

within the chip that performs balancing even when there is noencryption, making them area and power

hungry. Real time embedded systems have to not only be secure, but must remain small, fast and cost-

effective. As such, it is imperative that components be usedfor actual processing as much as possible,

and only used for obfuscation when absolutely necessary. Using an already available core for algorithmic

balancing inside a multicore chip will prevent adding extrahardware components, which would have

been necessary otherwise.
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Paper Organization

The rest of the paper is organized as follows. Section II summarizes previously proposed counter-

measures. Our balancing methodology is explained in Sections III and the framework is presented in

Section IV. Section V explains the experimental setup used for measurement and analysis. Results are

presented in Section VI and a discussion is provided in Section VII. Finally, the paper is concluded in

Section VIII.

II. RELATED WORK

In recent years, several countermeasures have been proposed to prevent side channel attacks. Effec-

tive countermeasures include masking, current/power flattening, non-deterministic processing, instruction

injection and balancing.

Masking techniques [5, 11, 23] use random values during the actual computation to prevent the

processed data being exploited by the adversary. For example, Trichina et al. [24] proposed a masking

technique to protect AES, where random values are used for additional computation of the result after

each round.

Muresan and Gebotys [25] proposed a current flattening technique, where the dissipated current is

flattened by addingnops in the code to provide sufficient discharge. A signal suppression circuit in [26]

is used to suppress the dissipated current.

Non-Deterministic Processors [27] execute the instructions out-of-order, issuing independent code

segments randomly during runtime. The adversary cannot identify the places where specific instructions

are executed by looking at the power profile, since the instruction execution is non-deterministic.

A number of researchers have stated that the insertion of dummy instructions (NOPs) could be a solution

to protect systems from side channel attacks [2, 28]. Several dummy operation insertion techniques are

proposed for ECC cryptosystems to create a constant execution path [29, 30]. Random instruction injection

techniques are presented in Ambrose et al. [31, 32]

Recently, several researchers [?, 17–22, 33] have proposed logic/circuitry level balancingtechniques

to prevent side channel attacks, using complementary logicor modified secure logic to balance bit-flips.

Dual-Rail circuits [20] are designed to consume the same power regardless of data processed. In Dual-Rail

circuits, each logic circuit is attached to complementary logic, complementing the discharge occurring

in the original logic circuit due to bit-flips [19]. Sense Amplifier Based Logic (SABL) [18], is a circuit

which dissipates the same dynamic power regardless of the bit transition (1→ 0, 0 → 1, 1 → 1 or 0

→ 0). Tiri and Verbauwhede [21, 22] proposed Wave Dynamic Differential Logic (WDDL), which uses
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parallel combination of two complementary gates to dissipate power independent of input. The second

gate in WDDL uses the inverted inputs of the original, producing the inverted output of the original (first)

gate, thus dissipating balanced power. Some improved versions of the mentioned circuitry techniques are

proposed in [17, 33].

In general, masking techniques have been vulnerable to second order DPA attacks [12, 34, 35], which

are algorithm specific approaches requiring higher degree of manual intervention. Non-Deterministic

Processors [27] are infeasible in highly dependent software code, which cannot be executedout-of-order.

The Non-Deterministic Processor [27] has complex circuitry (though no overhead has been reported).

The current flattening technique [25] increases execution time by up to 75%, and flattens locally, based

upon basic blocks. Dummy or Random instruction injections [29–32] can be eliminated using time

shifting [36] and by using a large number of samples. The circuitry level balancing solutions [17, 18,

20–22, 33], considered the most appropriate solutions to prevent DPA, double the original chip size due

to the complementary balancing logic circuits. These balancing logic circuits (which are permanently

implemented inside the chip) are unnecessary when a non-cryptographic program is executing on the

chip. In addition to the significant area overhead, WDDL techniques [21, 22] require balanced routing

of wires and [33] additional effort to produce the compilation of special libraries. Furthermore, certain

circuitry level balancing techniques (such as Dual-rail Logics [20]) are proved to be still vulnerable for side

channel attacks when enforcing glitches [?] and EM attacks without any backend-level countermeasures

[?].

Our multiprocessor balancing technique also requires manual intervention and it is algorithm specific

at this stage, similar to masking techniques [5, 11, 23]. However, our solution is comparatively easy to

generalize by examining the algorithm and is not vulnerableto second-order DPA. Our multiprocessor

balancing does not need a complete software modification compared to current flattening [25] and it does

not cause significant runtime overhead. Compared to the hardware balancing methods [17–22, 33], ours

does not require additional hardware, and utilizes one of the already available cores. A miniscule amount

of additional hardware is associated for the synchronization. The second core is utilized only when an

encryption/decryption part in a cryptographic program is executed by the first core, and otherwise the

second core is left for regular processing of other tasks. Our approach does not need any libraries to

be modified or compiled as has to be done in [33]. Hence, the multiprocessor balancing is an easily

implementable system with reduced area overhead usage for switching and synchronizing when no

balancing is required.
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A. Contributions

• An algorithmic level balancing architecture to conceal information is proposed for a dual-core

multiprocessor

• A synthesized hardware implementation is presented and thesecurity is justified by exploiting the

attack using power measurements

• The balancing is demonstrated on both DES and AES, which are well known block ciphers

B. Limitations and Assumptions

• Our technique addresses only multiprocessor embedded systems with at least two identical cores.

• We assume that our system is self contained with separate memories for each of the cores.

• Cache is disabled during balancing.

• Both cores are clocked by a single source.

III. A LGORITHMIC BALANCING

This section presents the balancing approaches proposed for DES and AES cryptographic algorithms.

A. Algorithmic Balancing in DES

Data Encryption Standard (DES [37]) is one of the popular andan aged block cipher [?]. We use DES

for balancing to demonstrate the proof of our concept. As depicted in Fig. 2(a), the DES algorithm contains

16 rounds. In the first round, as per the algorithm the input ispassed through an initial permutation and

then split into two parts,L0 and R0. XOR (denoted as⊕) is applied toR0 and the original sub key

K1 (which is 48 bits wide and is one of 16 subkeys).R0 and K1 are XORed and the output is used

for SBOX look-up. An XOR operation is applied to the output from the SBOX andL0 to produce the

intermediate valuea1. This valuea1 is placed inR1 and R0 is placed inL1. This completes the first

round.

A similar procedure is continued for all rounds (16 rounds),as shown in Fig. 2(a), and finally the

output is generated using an inverted permutation. The point at which side channel power analysis occurs

is the store operation of the intermediate resultai in DES. Though differing places for exploitation have

been tried by previous researchers, they have, so far, only succeeded when attackingai [11].

The balancing effect in DES is accomplished by inverting both data and the key as shown in Fig. 2(b).

Similar to the original DES algorithm in Fig. 2(a) the inverted DES algorithm in Fig. 2(b) passes the

inverted input through the initial permutation and then splits it into two parts,L0 andR0. XOR is again
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applied to the fragment of inverted data present inR0 and the inverted sub keȳK1. This results in the

same output as applying XOR to non-inverted data and non-inverted key as shown in Fig. 2(a). The

output, which is the XOR ofR0 andK̄1, is used for SBOX look-up, and the SBOX value produced will

be the same as the one obtained with original data and original key. However, XOR is now applied to the

output from the SBOX, and dataL0, thus resulting in inverted output̄a1 being placed inR1. R0 is passed

to L1; thus,L1 is complementary ofL1. TheRi andLi in the original algorithm shown in Fig. 2(a) are

completely complementary toRi andLi of the inverted algorithm shown in Fig. 2(b). This property of

complementary execution will be preserved throughout all rounds of the DES algorithm. In this way a

total complement of essential information is achieved between the core performing the encryption with

the real key and data with the core acting on the inverted key and inverted data.

The attacking point (the place where DPA is performed) in DESis the store ofai. Therefore having the

same index for the SBOX lookup in both programs will not causeany vulnerability, since complementary

outputs are stored. The following analysis proves that algorithmic balancing will provide an effective

countermeasure against power analysis side channel attackfor DES. To do this we consider a power

model based on Hamming distance [38], as shown in Equation 1,whereP is the power consumed,H

is the Hamming weight function,k is the scalar gain andn is the noise term.H is given by |Y ⊕ X|,

whereX is the previous value in the register andY is the new value after the operation.

P = kH + n (1)

As can be seen from Fig. 2(a) and Fig. 2(b),a1 and ā1 are complementary, and as such the Hamming

weight of a1 and ā1 will be the number of bits ina1. Likewise, a2, a3 etc will be balanced by their

corresponding complemented values as shown in Fig. 2(b). Since the Hamming weights forai ⊕ āi is

always 48, the attack point is no longer vulnerable, sincek and n are uncorrelated from the sensitive

transitions, and nowH is constant, thus makingP a constant value. Similar to Brier et al. [38], we

assume that the initial valueX = 0 (such an assumption is valid for any pre-charged logic [22]).

B. Algorithmic Balancing in AES

Advanced Encryption Standard (AES) is a symmetric-key block cipher encryption algorithm [10] and

is used in a wide range of embedded applications [1]. In our experiments we use the 128-bit AES (AES

with 192 bits and 256 bits are also currently used). Fig. 3 depicts the AES algorithm, specifying only

the necessary parts to analyze the attack. A detailed explanation of AES can be found in [39, 40]. The
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128-bit AES is considered for our experiments; others (192-bit and 256-bit) can be also treated in a

similar way.

As shown in Fig. 3 the 128 bits input data (which is shown as separate 8 bits blocks — thus input is

divided into blocks numbered from 0 to 15) is xor’ed with the 128 bits round key (this initial round key

is the actual secret key, and the remaining round keys are generated using a key scheduling algorithm

[1]). The result of the xor between the input and key (which are Y0, Y1, Y2 and Y3) will be used as

indices for the SBOX (FT0, FT1, FT2 and FT3) lookups. Different lines are used to show which bytes

are combined together for different table lookups. For example, the lines are fed into blocks FT0 from

Y1[0], FT1 from Y2[1], FT2 from Y3[2] and FT3 from Y0[3] at once. The output from the SBOXes

are xor’ed together. Separate xor’ed values are then fed into Y0, Y1, Y2 and Y3. The 128 bits result is

then xor’ed with the next round key. This process will continue for several iterations/rounds.

The main part for power analysis is the SBOX lookups. All key bytes have their one and only distinctive

place, which they contribute to one of the SBOX lookups. For example, Key byte KEY[3] only contributes

to the FT3 lookup in a round as shown in Fig. 3. Therefore if an adversary wants to predict KEY[3],

the only place for analysis would be the FT3 lookup.

We present here the algorithmic balancing as applied to AES to protect AES from power analysis. As

shown in Fig. 4(a), the AES encryption has several main functions: a key scheduling process which will

generate subkeys (K1,K2,...) for each round from the originalKey, the AddRoundKeyfunction to XOR

the INPUT with the Key, the SubBytesfunction for the SBOX lookups,ShiftRowsand MixColumnsto

scramble the intermediate bytes. There are four SBOXes usedin the SubBytesfunction.

Fig. 4(b) and Fig. 4(c) depict two different inversion approaches (partial and complete) in AES

algorithm. The partial inversion approach is presented here only to emphasize the significance of the

complete inversion. Both inversion approaches have the same key scheduling function as shown in Fig. 4.

The inverted keyKey of the original AES is divided into subkeys and the inversionis performed when

and where necessary to create inverted subkeys (denoted asi in a round box in Fig. 4 on the right side

segment of both figures). TheSBOXT used in key scheduling is a transposed version (i.e., indices

swapped) of the original SBOX, so called due to the inverse value used for the index. As the partial

inversion in Fig. 4(b) reveals, the inverted inputINPUT is bitwise XORed (the encryption in 128-bit

AES is performed in a 4×4 byte matrix) with the inverted first subkeyK1. Since this will produce the

normal output as the original AES (normal output denoted asn) the normal SBOX accesses will be

performed. This will be followed by the normalShiftRowsandMixColumnoperations. The final function

in the first round (Round 1) is the AddRoundKeyfunction which will XOR the intermediate data with
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the second inverted subkeyK2. Hence, an inverted output will be produced (denoted asf ) after Round

1. This inverted output is again inverted (the inversion is denoted as a round box labeledi in Fig. 4(b))

and the normal value of the original AES is sent to the next round. Similar process continues till the end

of the AES encryption.

The complete inversion as shown in Fig. 4(c) has the same key scheduling process of the partial

inversion, but has two main different components in the encryption process (the changed components are

shaded). Instead of the inverted inputINPUT , the original inputINPUT is used. And all the SBOXes

(four SBOXes) inSubBytes
T

are inverted and transposed of the original. TheAddRoundKeyoperation

for the original inputINPUT and the inverted subkeyK1 will produce the inverted output of the original

(denoted asf to specify flipped). Since SubBytes
T

is inverted and transposed the inverted indices

coming into the SBOXes will produce the inverted outputs compared to the SBOX outputs in the original

AES. There will be four inverted outputs (each from an SBOX) and theAddRoundKeyoperation with

the inverted subkeyK2 will produce the inverted outputs of the original. This willcontinue till the end

of the program. These modifications have produced a completeinversion in terms of data bits throughout

the encryption.

The partial inversion in Fig. 4(b) does not process the inverted data at the SBOX operations, but

generates inverted outputs after theAddRoundkeyoperation of each round. This has a considerable effect

in balancing (even though it is not completely balanced), especially when we look at the implementation

of the AES encryption for each round, which does the XOR with the subkey first and then the SBOX

accesses. For example, the first 32 bits intermediate resultY0 in an encryption round is produced (in the

C code) asY0 = K1⊕FT0⊕FT1⊕FT2⊕FT3; whereFT0, FT1, FT2 andFT3 are the four SBOX

lookups. According to this implementation it is visible that there is balancing in the process, since the

inverted subkey produces inverted intermediate data aftereach XOR. However, the SBOXes (which are

the main attack points) are receiving the normal input as theoriginal and producing normal output. Since

there is pipelining in the processor, there exists a chance that the balancing in the pipelines obfuscates

the unbalanced SBOX access pipeline stages.

Since the inverted approaches shown in Fig. 4 use certain extra flipping operations (denoted asi

in round blocks), the original AES program should also have similar operations with the same set of

instructions to synchronize both programs (i.e., originaland inverted). Note that balancing is performed

by executing same instructions in parallel but with complemented data values, which shows that the

synchronization between cores is important. Hence, we created variables for such flipping operations,

assigning all 0’s in the original program and all 1’s in the inverted program. XORing at both instances
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with that variable will perform the required task.

The attack point (the place where DPA is performed) in AES is the SBOX access, where an 8-bit

intermediate data is loaded and stored into the memory as shown in Fig. 3. The same power model

used for DES (illustrated in Equation 1), is considered to prove that complete algorithmic balancing

will provide an effective countermeasure against power analysis side channel attack for AES. The 8-bit

intermediate data in the Original AES (shown in Fig. 4) is referred to asx and the 8-bit intermediate

data in the complete inversion (shown in Fig. 4(c)) is referred to asx. For example, the intermediate

dataa and b during FT3 lookup as shown in Fig. 3 will be complementary forthe complete inversion

algorithm (i.e., the transpose and inverted values in FT3 will make b complementary). The values ofx

andx are complementary, and as such the Hamming weights betweenx andx will be the number of bits

in x. Since the Hamming weight forx ⊕ x is always 8, the attack point is no longer vulnerable;k and

n are constants, and sinceH is constant,P is a constant value. If the attack also considers the power

consumption caused by the bitflips in the bus during load and store, the power model is added with an

additional componentrHb as explained in [28]. The modified power model is presented inEquation 2,

wherer is the scalar gain andHb is the Hamming weight in the bus during load or store.

P = kH + rHb + n (2)

Since the complete balancing uses complementary index and retrieving complementary outputs from

the SBOX (as shown in Fig. 4), the resulting Hamming weightHb is also constant. Hence, the power

consumptionP is still maintained at a constant value.

IV. M ULTIPROCESSORBALANCING ARCHITECTURES

The multiprocessor balancing architectures for both DES and AES are presented in this section.

A. Base Architecture

Fig. 5 depicts the schematic diagram of the base dual core processor used in our design. As depicted,

the processor has two identical cores with separate instruction and data memories for each core.

B. Balancing Control

In our implementation we use a flag register to indicate the encryption program execution and to start

the balancing. This flag register can be set in one of three ways: (i), using the operating system when
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scheduling the encryption program to the core; (ii), detecting the memory location accesses where the

data and key for the encryption are stored; or (iii), using a special instruction to set the flag register.

Termination of balancing, by clearing the flag register, canbe performed in a similar fashion by using the

operating system which can clear the flag register when the scheduled encryption program is completed;

or by inserting a special instruction in the source code to clear the flag.

For our experiments, balancing is triggered and terminatedby two special instructions which are

instrumented in the source code (i.e., the first,startBal, and the last,stopBal, instructions of the encryption

programA as shown in Fig. 6).

The execution of thestartBal instruction indicates to the CONTROLLER that an encryptionprogram is

scheduled in the core. An External Interrupt is raised in CORE2. This is a maskable interrupt which will

trigger after all the pipelines are flushed. Necessary registers (Registerfile, LO, HI and Program Counter)

of CORE2 are saved in the stack as shown in Fig. 6. After the registers are saved, the CONTROLLER

sends the program counter (PC) values to CORE1 and CORE2 on the same clock cycle (i.e., PC values

of Encrypt in programA andA). Both the original and complementary programs are executed in parallel

by CORE1 and CORE2 respectively. When encryption is finished, the endBalinstruction in programA

will be executed by CORE1, which will send a signal to the CONTROLLER indicating the completion

of encryption. The CONTROLLER restores the saved registersfrom the stack. CORE2 will resume its

execution and the next available program will be scheduled on CORE1.

C. Switching and Interrupts

An External Interrupt is supplied by the CONTROLLER to one ofthe cores to service an interrupt while

the balancing is in progress. This interrupt is serviced after the pipelines are flushed, thus the registers are

updated with the correct values. Each interrupt routine (e.g., programB) will have three code segments:

one, backupReg, to save the registers into the stack; two,restoreReg, to restore the registers from the

stack; and three,endIntr, to end the interrupt. TheendIntr instruction sends a Non-maskable Interrupt

(NMI) to the CONTROLLER as shown in Fig. 6. An NMI request willforce the controller to change

the PC of both cores to their original locations to resume balancing. This is done at the same clock

cycle inorder to preserve synchronization. When a CORE receives an interrupt during balancing, the

other CORE is put on hold till the interrupt is serviced. However, the other CORE can be also allowed

to execute the next program in the queue, but with careful modification in the controller to maintain

synchronization for balancing. Table I lists the additional resources used for balancing. The Program

Counter (PC) is saved intoPC backupat the fetch stage of theexternalinterrupt and saved in the stack
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at the memory stage. Theswitch register is set and cleared by thestartBal andendBalinstructions.

Resources Names
Instructions startBal, endBal, endIntr
Interrupts external (masked), NMI
Registers PC backup, switch

TABLE I

ADDITIONAL RESOURCES FORBALANCING

The interrupts from one core to another can be also handled byoperating systems using software

interrupts [41, 42].

D. The Multiprocessor Balancing Frameworks

Fig. 7 presents the multiprocessor frameworks for DES (called MUTE-DES), and for AES (called

MUTE-AES). In bothMUTE-DESandMUTE-AES, the second core (CORE2) executes the same program

as the first (CORE1), in parallel, but with the complementaryalgorithms as explained in Section III (when

not encrypting, both cores run independently and execute different programs). Two separate instruction

memories and data memories are used for CORE1 and CORE2. TheMUTE-DESuses the inverted key

(K ′) and inverted data (D′) in its Data Memory 2 compared to its Data Memory 1, which usesthe

original key (K) and original data (D) as shown in Fig. 7(a). TheMUTE-AESuses the inverted key,

original data and the modified SBOXes (explained in Section III-B) in Data Memory 2 compared to its

Data Memory 1 as shown in Fig. 7(b).

Each core fetches instructions from its corresponding instruction memory. The balanced DES and AES

programs are stored in a part of CORE2’s Instruction Memory.The CONTROLLER handles switching

and interrupts for balancing as explained above. Note that the caches are disabled during balancing, since

having a cache will not allow the synchronizing of cores. Butif this results in excessive performance

penalties, a scratchpad memory could be used for the encryption program.

V. EXPERIMENTAL SETUP

The hardware design that was used for the multiprocessor balancing architectures (MUTE-DESand

MUTE-AES) is shown in Fig. 8. The Instruction Set Architecture (ISA) is fed into an automatic processor

design tool called (ASIPMeister[43]) and two identical cores (CORE1 and CORE2) are generated to

create bothMUTE-DESandMUTE-AESseparately.
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As Fig. 8 depicts,MUTE-DESandMUTE-AESarchitectures are designed by combining CORE1 and

CORE2 with the requisite flags. The balancing multiprocessor frameworks are implemented in a processor

with the PISA (Portable Instruction Set Architecture) instruction set (as implemented in SimpleScalar

tool set with a six stage pipeline) processor without cache.Fig. 9 depicts the process of performing

power analysis on two different processors; Normal Dual Processor and MUTE processor (i.e.,MUTE-

DESor MUTE-AES). The Normal Dual Processor is used as a base processor for comparison. The DES

program in C is compiled using GNU/GCC cross compiler for thePISA instruction set, which produces

the binaries.

Synopsys Design Compiler is used to synthesize both processor models, which are simulated together

with the program binary in the ModelSim hardware simulator to generate the stimulus wave with switching

information. The execution trace is verified using Modelsimand extracted for future use. Primepower is

used to measure the power values in watts (W ). As shown in Fig. 9, the address (Addr) and instruction

opcode (Data) of instruction memory (Imem) are extracted from the execution trace. Perl scripts are

used to reannotate the power values to the execution trace. DPA is implemented in a separate C program,

and the execution of that C program extracts the necessary instruction power values from the trace.

VI. RESULTS

This section illustrates the results forMUTE-DESand MUTE-AESmultiprocessor balancing frame-

works, separately. Each architecture is presented with itsDPA, hardware summary and performance

analysis.

A. Results for MUTE-DES

1) DPA in MUTE-DES:We performed DPA experiments (based on [2] and [11]) on the normal dual-

core architecture andMUTE-DESprocessor, by executing the DES cryptographic program and analyzing

each SBOX lookup in each round. Two commonly used selection functions are either based on SBOX

output bits, or based on the selection bits to the SBOX. Sincethe DPA, based on the SBOX output bit

[11] did not reveal the key in our experiments, we present results of DPA based on selection bits to the

SBOX [2]. This DPA follows the method proposed by Messerges et al. [5], which predicts the secret key

by inspecting all possible SBOX lookups in each round.

The X axis of the displayed DPA plots give all possible key values from 0 to 255 (the first eight bits

of a DES encryption key), which is plotted against the DPA values (Watts) in the Y axis for each key

guess. The attacking point is the store instruction just after the SBOX lookup, where the SBOX output
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is XORed with the inverted data and stored (as explained in Section III). Fig. 10 shows a DPA trace

performed on a normal dual-core processor, where one core isexecuting the DES program while the

other remains idle.

Predicting the correct key corresponds to the significant peak in the DPA trace. In this example (shown

in Fig. 10) the significant peak happens at a key value of 10; DPA was performed on the third selection

bit, for the third sbox lookup, in the last round of encryption. Note that another significant peak also

appears for the key 233, which is slightly lower than the peakat 10. Reasons for such ghost peaks are

given in [7].

Concealment of information in our proposed architecture can be achieved when both data and key are

inverted. Fig. 11 is produced when the balancing core uses the inverted secret key and the inverted data

of the first core (DPA on the third selection bit, for the thirdsbox lookup, in the last round of encryption).

As shown in Fig. 11, DPA cannot reveal the secret key in theMUTE-DESarchitecture, where the correct

key (value of 10) does not produce a significant peak. The DPA values are much less forMUTE-DESas

shown in Fig. 11, compared to the single core DPA values shownin Fig. 10. This is due to the balancing

of the information in processing ‘1’s and ‘0’s.

To demonstrate the security of our method we compare executions of the encryption algorithm with

two different inputs (these were randomly chosen) and subtract the two “clock cycle accurate” power

traces. The only information available to the attacker comes from the differences between the power

traces for different data inputs chosen. Thus, for an attacker to be able to extract any usable information

about the key from the power traces, the power traces for different inputs must be distinguishable.

We used Fast Fourier Transform (FFT) analysis to examine thespectrum available. Our experiments

show that the difference when balancing is used (shown in Fig. 12(b)), is an order of magnitude lower

than the difference when the program is running on a single core (shown in Fig. 12(a)), and that the

frequency spectrum of the difference has far less information (shown in Fig. 12(d)), unlike the spectrum

of the difference for a single core (shown in Fig. 12(c)) which exhibits many well defined peaks.

Similarly, using the same input data but with two different keys, two clock cycle accurate power traces

are obtained. One power trace is subtracted from the other and the obtained result is much smaller for the

MUTE-DESarchitecture when compared to the result from the single core. Once again we see a much

lower amount of variation in the FFT output. For an attacker to extract any usable information from the

power trace about the key, the power trace and the key value must have a non negligible correlation. The

difference of power traces for different keys must be above the noise threshold for a successful attack.

Thus, the magnitude of the difference and its spectrum indicate that little information above noise level
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is present in the power trace, regardless of what data or key is used.

To get a better appreciation for the hiding ability of our method, we also ran an experiment which was

not perfectly balanced, by complementing only the key, and not the data. The DPA graph is presented

on Fig. 13(a), and it clearly shows that the peak that corresponds to the right guess is much lower on

MUTE-DES. However, when we find the differences of the power traces fortwo different keys as shown

in Fig. 13(b)[1], and examine its spectrum (shown in Fig. 13(b)[2]), we still see several well defined

peaks, leaving the possibility that there might be some usable information. This shows that both the key

and the data must be inverted to preclude the presence of any attacker usable information in the power

trace.

Fig. 14 shows a general picture of the variation of DPA plots for a single core in the standard dual-core

processor and for a processing system based on theMUTE-DESarchitecture upon the selection bits, for

the third sbox lookup in the last round of DES encryption (which was shown to be vulnerable previously).

The six plots in each category (each row) is based on the six selection bits (left to right plots start from

the most significant bit to least significant bit). First row of Fig. 14 displays the DPA variation in a single

core, while the second row depicts the DPA variation when using the inverted key and inverted data

(invKeyinvData) inMUTE-DES.

From the variations shown in Fig. 14(a), the DPA when DES is scheduled on one core, produces higher

values when compared toMUTE-DES. MUTE-DESdisplays a flattened variation (values close to zero)

shown in Fig. 14(b). This flattening is due to the balanced bit-flips.

Note that the DPA based on the SBOX output bit [11] showed similar variations, where the DPA values

are flattened after balancing.

2) Hardware Summary for MUTE-DES:Table II shows the hardware details of theMUTE architec-

ture, generated by Synopsys Design Compiler. TheMUTE-DESarchitecture consumes little additional

hardware (around 0.1%) compared to the standard dual processor as shown in Table II. The clock period

is slightly increased forMUTE-DES, because of the switching and synchronizing of the cores.

Normal Dual Processor MUTE-DES
Area (cell) 221842 222242
Clock (ns) 41.63 49.61

TABLE II

HARDWARE SUMMARY
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3) Performance Overhead in MUTE-DES:The performance overhead caused when the second core

is switched for balancing is tabulated in Table III. The normal DES program costs 76,350 clock cycles

including memory accesses.

Clock Cycles
Basic DES 76,350
Delay

Save Registerfile 320
Save Registers,PC 40
Flush Pipelines 6
Interrupt to switch 1
Exit the interrupt 1
Restore registerfile 320
Restore Registers,PC 40

Total Delay 728

Performance Overhead 0.94%

TABLE III

PERFORMANCEOVERHEAD

As shown in Table III, every time balancing is performed, there is a delay of 728 clock cycles, which

includes saving and restoring necessary registers, setting and clearing the flag for switching, and memory

accesses. This delay comprises of only 0.94% percent of the runtime. Note that this overhead does not

include any delay in software interrupts, which might occurwhile the system is encrypting. While the

balancing is being performed, the second core will not be doing its usual tasks. Hence, the whole system

will have a further delay of 76,350 cycles in the worst case scenario.

B. Results for MUTE-AES

1) Differential Power Analysis (DPA):We performed the Differential Power Analysis (DPA) on AES

to predict the correct 8 bits of the secret key based on the definitions from [2, 11], where the first output

bit from the forth SBOX in first round is used for partitioning. The attack point for power measurement

is the load instruction from the SBOX. All the DPA plots here are drawn for the DPA bias values (Y axis

in watts) versus the possible 256 key values (i.e., 0 to 255 for 8 bits). A standard dual-core processor,

executing AES on one core and keeping the other core idle (without any countermeasure), is attacked

to determine the scenario of the attack and also as a base case. Fig. 15 depicts the DPA plots for a

single core (in a dual-core processor), where the top plot isattacked at the load (LW) instruction, the



17

bottom left at the XOR instruction and the bottom right plot using the average of the power consumption

during the SBOX access (i.e., average of the power magnitudes starting from load till the store after the

SBOX lookup). In all three cases shown in Fig. 15 the correct key (value of 14) is clearly identified by

a significant peak, thus successfully passing the attack hypothesis.

To justify the necessity of the complete inversion algorithm for the countermeasure, the partial inversion

explained in Section III-B is attacked using DPA. As Fig. 16 depicts, the correct key is still predicted

using the load (LW) instruction and the XOR instruction, both of which reveal a significant peak. This

experiment shows that the balancing effect caused by operations other than the SBOX accesses cannot

mask the key. Hence, the SBOX accesses play an important rolein revealing the key, and has to be

balanced completely.

Fig. 17 presents the DPA plots for the completely balanced processor architecture which is explained

in Section III-B. As the plots reveal, the DPA signals at the correct key guess (value 14) failed to produce

significant peaks for all the three cases (i.e., load instruction, XOR instruction and average during SBOX

access). The DPA bias values are much smaller and have a smaller variation when compared to the

values observed for the single core, especially at the load (LW) instruction (which is the main attack

point exploited by previous researchers [11]).

Comparisons similar to that of DES (explained in Section VI-A.1) are performed to demonstrate the

security of our method inMUTE-AESby subtracting two “clock cycle accurate” power traces for two

different inputs. We used Fast Fourier Transform (FFT) analysis to examine the spectrum available. Our

experiments show that the difference when balancing is used(shown in Fig. 18(c)), is much lower with

more zeroes than the difference for an AES execution scheduled on one core of the processor (shown

in Fig. 18(a)), and that the frequency spectrum of the difference looks much like white noise (shown in

Fig. 18(d)), unlike the spectrum of the difference for the original AES (shown in Fig. 18(b)) that exhibits

many well defined peaks.

The magnitude of the difference and its spectrum indicate that no information above noise level is

present in the power trace, regardless of what the used data or key. This also proves that our balancing

technique (MUTE-AES) prevents the system from Simple Power Analysis (SPA). Since MUTE-AES

balances the intermediate data throughout the AES algorithm (i.e., Hamming weight of the processed

data is always balanced) there won’t be any correlation between Hamming weight and power magnitude.

2) Hardware Summary for MUTE-AES: MUTE-AESalso has the same hardware details ofMUTE-

DESas shown in Table II, since the same flag registers and cores are used. Note that the only difference

is the memory setup betweenMUTE-DESandMUTE-AESas shown in Fig. 7.
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3) Performance Overhead in MUTE-AES:The performance overhead caused, when the second core

is switched for balancing, is tabulated in Table IV. Normal AES program costs 175,600 clock cycles

including memory accesses.

Clock Cycles
Basic AES 175600
Delay

Save Registerfile 320
Save Registers,PC 40
Flush Pipelines 6
Set start flag 1
Clear start flag 1
Restore registerfile 320
Restore Registers,PC 40

Total Delay 728

Performance Overhead 0.42 %

TABLE IV

PERFORMANCEOVERHEAD

As shown in Table IV, every time balancing is performed, there is a delay of 728 clock cycles, which

includes saving and restoring necessary registers, setting and clearing the flag for switching and memory

accesses. This delay costs 0.42% percentage in additional runtime. This overhead does not include any

delay in software interrupts which might occur while the system is encrypting. A further latency of

175,600 clock cycles will be added to the whole processing time in the worst case. This is because that

the second core has to pause its normal processing when balancing.

VII. D ISCUSSION

In our approach, the primary core executes the cryptographic program (the second one runs the

complementary version), which is enhanced with additionalflag registers. But in practice, the operating

system can decide upon the task scheduling of processors. The operating system can force an application

to run on a particular core [44], thus always scheduling the cryptographic program to the primary core.

If we allow the OS to schedule the cryptographic program to either core, then additional flag registers

have to be attached to all the cores, to enable such a universal execution.

Similar algorithmic level balancing can be performed usinga VLIW processor, where a normal

instruction and a complementary instruction can be included in a word [45]. But in such cases a VLIW

processor will not be able to execute any other program when encryption is not being performed.
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Since balancing is performed by a specific core all the time, apowerful magnetic probe can be placed

on top of the chip to observe the electromagnetic (EM) dissipation of only one of the cores, which is

executing the correct program. There is a high probability that the correct key can be exposed from these

measurements. To prevent this scenario, the place and routeof both cores can be performed together with

both cores overlaid on top of each other, without a clear partition between the two.

Such on overlaid place and route also prevents one of the cores having a greater power footprint (due to

physical variations in the wafer) than the other. If one of the cores did have a greater power footprint, then

the encryption key can be extracted by side-channel analysis. However, with an overlaid place and route,

individual bits in registers can exhibit greater power profile, but such things will be random amongst the

two cores and will not remove the balancing ability of the MUTE architecture.

Another consideration is if one core encrypts while the other performs normal computation, then there

might be sufficient hiding from the noise of the second core. Hiding the actual behavior in the power

profile by the second core is difficult. Millions of samples taken will statistically average out the noise,

which once subtracted will then reveal the encryption key. Hence, MUTE guarantees hiding all of the

time and does not allow any leakage of secure information to an adversary.

We assume that the instructions are stored in an non-writable (i.e., only readable) ROM. Hence, an

attacker can not modify the sensitive contol registers and the signals. However, we should point out that

physical attack on the memory is still possible but several solutions exist to prevent physical attacks

(which is not our scope). Storing such critical informationinto a ROM costs in hardware area. All the

cryptographic techniques have this memory overhead (or a dedicated ROM to store the key and the code)

and hence we did not consider it as an extra overhead.

In this work, we managed to attack the secret key only at the SBOX output in AES and at the SBOX

input in DES. None of the other places in DES or AES produced a significant peak in the DPA signal.

Hence, we demonstrated the balancing technique, considering only these attacking places. However, it

is worth to note that the balancing algorithm would be different if the attack place is different. Our aim

is to prove that the algorithmic multiprocessor balancing can be used to prevent power analysis attacks

and its up to the designer to deploy this technique based on the attacking point observed.

VIII. C ONCLUSIONS

This paper proposes a Multiprocessor Balancing Technique to prevent side channel attacks for the most

common block ciphers, DES and AES. The second core in a dual-core processor is used to mask the

effects caused by the secret key from the first core, by running the complementary program in parallel
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to the first core.

The balancing is only performed when necessary. The same methodology can be applied with minimal

changes to any encryption programs which operate in a “bit-wise” manner, by either permuting or flipping

bits independently. Similar methods can also be developed to non-bit-wise methods such as RSA, but

are harder to implement and, while significantly safer than non-balanced single processor methods, do

not result in perfect balancing. Our future work will investigate on such balancing approaches.
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Fig. 4. AES Algorithmic Balancing (images influenced by [46])
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Fig. 17. DPA plots for Complete Balancing: MUTE-AES
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