Multiprocessor Information Concealment
Architecture to prevent Power Analysis based
Side Channel Attacks

Jude A. Ambrose Roshan G. Ragél Sri Parameswaran Aleksandar Ignjatovid
fSchool of Computer Science and Engineering,
University of New South Wales, Sydney, Australia
{ajangelo, sridevan, ignjp@cse.unsw.edu.au
‘Department of Computer Engineering,
University of Peradeniya, Sri Lanka

roshanr@ce.pdn.ac.lk

Abstract

Side channel attackers observe external manifestationat@fal computations in an embedded
system to predict the encryption key employed. The abilityekamine such external manifestations
(power dissipation or electromagnetic emissions), is somidjreat to secure embedded systems.

This paper proposes a secure multiprocessor architeciyreevent side channel attacks, based on a
dual-core algorithmic balancing technique, where two ibah cores are used. Both cores use a single
clock and encrypt simultaneously, with one core executhmy driginal encryption, while the second
executes the complementary encryption. This effectivalptces the crucial information from the power
profile (note that it is the information and not the power peofiself), hiding the actual key from the
adversary attempting an attack based on Differential Péwealysis (DPA).

The two cores normally execute different tasks, but willrgpttogether to foil a side channel attack.
We show that, when our technique is applied, DPA fails on tlestneommon block ciphers, DES and

AES, leaving the attacker with little useful informationtiwviwhich to perpetrate an attack.

Index Terms

Side Channel Attack, Multiprocessor Balancing, Power #sial

. INTRODUCTION

The explosion of embedded systems and their resulting itpiggia cause for their frequent use in
secure transactions. Thus researchers have begun toigatestecure techniques to prevent confidential
data transmissions being accessed by an adversary. Sidm&hattacks (SCAs) are a security threat
to embedded systems, where adversaries eavesdrop onabxtexnifestations like power usage [1, 2],
processing time [2, 3] and electro-magnetic (EM) emissiéh ffom the device and correlate these
properties with internal computations, obtaining criticdormation to predict the key. These techniques
have been shown to reveal the secret keys of cryptograpbigrgams like DES, AES, RSA and SEAL
[2]. Power analysis has been the most extensively used Sidar@| Attack technique to extract secret
keys during the execution of cryptographic algorithms [16p

There are two key power analysis methods: (1), Simple Powelysis (SPA), which reveals direct
information about the data being executed; and (2), Diffeaé Power Analysis (DPA), which requires
multiple power traces to perform statistical analysis tedict the data used in computations [2]. There
are several SPA models used in the literature to attack tiidrken a single (or few) traces. One such
model [7] predicts the Hamming weights (i.e., number of 1 im the output) of a computed data
using the power magnitude, based on the hypothesis thaighertthe Hamming weight, the higher the
power magnitude [8]. Another model exploits the conditidmi@nches to identify the data used by the
conditional statements in the code. For example, the atastould simply distinguish the square and
multiply patterns of the RSA from the power profile [9]. Thedl@A models allow an attacker to guess the
correct key more quickly, than if he/she were to use brutefloDPA is a more powerful technique than
SPA, which is based on the hypothesis that there is a signifiiference in the power consumption in
processing 1's and 0’s [2]. Fig. 1 depicts a brief overvienadDPA, where the adversary feeds several
inputs to the chip and records the power traces. Severakgs@d the encryption key are made. For each
of the key guesses the output power traces (of several sepapaits) are separated into two, depending
upon whether we expect the output to be a “1” or a “0” as showFRig 1. The difference between
the averages of these sets is known as the DPA signal (alssnkas DPA bias signal). A peak in this
DPA signal trace, which is plotted against possible key gegswill reveal the correct key. In Advanced
Encryption Standard (AES [10]) encryption, the most comiyp@xploited intermediate bit for the DPA
attack is one of the output bits from an SBOX [11]. Furtheerehces about DPA can be found in [2,
5].

Such successful DPA attacks [2, 5, 6, 12, 13] prove that ipg-ftaused by secret keys enforce

significant variation in the dissipated power sequencechixeg a program with the complementary
algorithm will produce complementary bit-flips, with theiginal algorithm (e.g., bit-flip 1— 0 will
correspond to bit-flip G— 1). Therefore, if we execute both the original and comple@rgrencryptions
simultaneously, the information on the power profile due iteflips of the secret key will cancel out.
Note that the power profile itself will be the addition of batbres. Specifically, it is the correlation
between the critical information and the power profile thatwask. Thus it is not our intention to have
a flat power profile, but a power profile which is absent of infation containing the encryption key.

The plethora of embedded systems containing multiprocessach as cell phones, PDAs, gaming
consoles, audio players, video recorders and video canfbdad 6] motivated the use of one in-built
core of a multi-core processor to function as a balancing gountering the real effects caused by the
secret key in the power profile.

In this work, we have implemented the proposed balancinignigae on a dual-core multiprocessor.
The two cores of the processor generally execute indepéiaks (or threads), but when one core starts
to execute the encryption algorithm, the second core autoafiy starts the complementary encryption
program. Note that the second core is used for balancing whign there is an encryption algorithm
running on the first core.

Part of this work was presented at ICCAD (2008],[where the balancing mechanism for AES was
explained. This journal generalizes the balancing mecsranby enforcing it to DES and AES. The

balancing control and switching mechanisms are presemedktail.

Motivation

Significant variation in the dissipated power sequence,tdube bit-flips occurring while processing
encryption keys, enable power analysis attacks. Balanttiege bit-flips would mask the correlation
produced by the actual key. However, previous balancingnigoies [17—22] used complementary logic
within the chip that performs balancing even when there imeryption, making them area and power
hungry. Real time embedded systems have to not only be sdmutrenust remain small, fast and cost-
effective. As such, it is imperative that components be uUsedictual processing as much as possible,
and only used for obfuscation when absolutely necessaigglis already available core for algorithmic
balancing inside a multicore chip will prevent adding exi@dware components, which would have

been necessary otherwise.

Paper Organization

The rest of the paper is organized as follows. Section Il sanmes previously proposed counter-
measures. Our balancing methodology is explained in Sextith and the framework is presented in
Section IV. Section V explains the experimental setup usedrfeasurement and analysis. Results are
presented in Section VI and a discussion is provided in 8edfill. Finally, the paper is concluded in

Section VIII.

Il. RELATED WORK

In recent years, several countermeasures have been pdofmopeevent side channel attacks. Effec-
tive countermeasures include masking, current/poweefiaty, non-deterministic processing, instruction
injection and balancing.

Masking techniques [5, 11, 23] use random values during ttteah computation to prevent the
processed data being exploited by the adversary. For egampthina et al. [24] proposed a masking
technique to protect AES, where random values are used fiiti@thl computation of the result after
each round.

Muresan and Gebotys [25] proposed a current flattening tgaanwhere the dissipated current is
flattened by addingiops in the code to provide sufficient discharge. A signal suggiom circuit in [26]
is used to suppress the dissipated current.

Non-Deterministic Processors [27] execute the instrastiout-of-order, issuing independent code
segments randomly during runtime. The adversary cannatifgighe places where specific instructions
are executed by looking at the power profile, since the ioittm execution is non-deterministic.

A number of researchers have stated that the insertion ofrguimstructions (NOPS) could be a solution
to protect systems from side channel attacks [2, 28]. Skdaramy operation insertion techniques are
proposed for ECC cryptosystems to create a constant egaquath [29, 30]. Random instruction injection
technigues are presented in Ambrose et al. [31, 32]

Recently, several researchefs 17-22, 33] have proposed logic/circuitry level balancieghniques
to prevent side channel attacks, using complementary lmgioodified secure logic to balance bit-flips.
Dual-Rail circuits [20] are designed to consume the samespoggardless of data processed. In Dual-Rail
circuits, each logic circuit is attached to complementayid, complementing the discharge occurring
in the original logic circuit due to bit-flips [19]. Sense Afifiger Based Logic (SABL) [18], is a circuit
which dissipates the same dynamic power regardless of theeabisition (1— 0, 0— 1,1 — 1 or 0

— 0). Tiri and Verbauwhede [21, 22] proposed Wave Dynamicdbghtial Logic (WDDL), which uses

parallel combination of two complementary gates to digsigmwer independent of input. The second
gate in WDDL uses the inverted inputs of the original, pradgdhe inverted output of the original (first)
gate, thus dissipating balanced power. Some improvedorersif the mentioned circuitry techniques are
proposed in [17, 33].

In general, masking techniques have been vulnerable tondemmler DPA attacks [12, 34, 35], which
are algorithm specific approaches requiring higher degfemanual intervention. Non-Deterministic
Processors [27] are infeasible in highly dependent soétwade, which cannot be executeat-of-ordet
The Non-Deterministic Processor [27] has complex cirgufthough no overhead has been reported).
The current flattening technique [25] increases executioe by up to 75%, and flattens locally, based
upon basic blocks. Dummy or Random instruction injectioB8—82] can be eliminated using time
shifting [36] and by using a large number of samples. Theuding level balancing solutions [17, 18,
20-22, 33], considered the most appropriate solutionsdagmt DPA, double the original chip size due
to the complementary balancing logic circuits. These tatanlogic circuits (which are permanently
implemented inside the chip) are unnecessary when a nguegnraphic program is executing on the
chip. In addition to the significant area overhead, WDDL téghes [21, 22] require balanced routing
of wires and [33] additional effort to produce the compdatiof special libraries. Furthermore, certain
circuitry level balancing techniques (such as Dual-ratjics [20]) are proved to be still vulnerable for side
channel attacks when enforcing glitch&$ dnd EM attacks without any backend-level countermeasures
[?].

Our multiprocessor balancing technique also requires mlantervention and it is algorithm specific
at this stage, similar to masking techniques [5, 11, 23]. &l@w, our solution is comparatively easy to
generalize by examining the algorithm and is not vulnerablesecond-order DPA. Our multiprocessor
balancing does not need a complete software modificatiorpaosd to current flattening [25] and it does
not cause significant runtime overhead. Compared to thenaaedbalancing methods [17-22, 33], ours
does not require additional hardware, and utilizes one @fiready available cores. A miniscule amount
of additional hardware is associated for the synchrordmati he second core is utilized only when an
encryption/decryption part in a cryptographic program;eauted by the first core, and otherwise the
second core is left for regular processing of other tasks. @&wproach does not need any libraries to
be modified or compiled as has to be done in [33]. Hence, theéipmtdessor balancing is an easily
implementable system with reduced area overhead usagewitchsig and synchronizing when no

balancing is required.

A. Contributions

« An algorithmic level balancing architecture to concealomfiation is proposed for a dual-core
multiprocessor

« A synthesized hardware implementation is presented anddberity is justified by exploiting the
attack using power measurements

o The balancing is demonstrated on both DES and AES, which atekwown block ciphers

B. Limitations and Assumptions

« Our technique addresses only multiprocessor embeddeensystith at least two identical cores.
o We assume that our system is self contained with separateorienfor each of the cores.
o Cache is disabled during balancing.

« Both cores are clocked by a single source.

I1l. ALGORITHMIC BALANCING

This section presents the balancing approaches propos&Efd and AES cryptographic algorithms.

A. Algorithmic Balancing in DES

Data Encryption Standard (DES [37]) is one of the popularam@ged block ciphef’]. We use DES
for balancing to demonstrate the proof of our concept. Asadeg in Fig. 2(a), the DES algorithm contains
16 rounds. In the first round, as per the algorithm the inpgtaissed through an initial permutation and
then split into two partsy, and Ry. XOR (denoted asp) is applied toR, and the original sub key
K, (which is 48 bits wide and is one of 16 subkeyg), and K; are XORed and the output is used
for SBOX look-up. An XOR operation is applied to the outpuirfr the SBOX and, to produce the
intermediate value:;. This valuea; is placed inR; and Ry is placed inL;. This completes the first
round.

A similar procedure is continued for all rounds (16 rounds,shown in Fig. 2(a), and finally the
output is generated using an inverted permutation. Thet poiwhich side channel power analysis occurs
is the store operation of the intermediate resylin DES. Though differing places for exploitation have
been tried by previous researchers, they have, so far, aiglgegded when attacking [11].

The balancing effect in DES is accomplished by invertinghiddata and the key as shown in Fig. 2(b).
Similar to the original DES algorithm in Fig. 2(a) the invtt DES algorithm in Fig. 2(b) passes the

inverted input through the initial permutation and theritspt into two parts,L, and Ry. XOR is again

applied to the fragment of inverted data presenkinand the inverted sub kel(;. This results in the
same output as applying XOR to non-inverted data and ncerieet key as shown in Fig. 2(a). The
output, which is the XOR oRR, and K, is used for SBOX look-up, and the SBOX value produced will
be the same as the one obtained with original data and ofigityaHowever, XOR is now applied to the
output from the SBOX, and dat&y, thus resulting in inverted outpdt being placed inR,. R, is passed
to Ly; thus,L; is complementary of.;. The R; and L; in the original algorithm shown in Fig. 2(a) are
completely complementary t®; and L; of the inverted algorithm shown in Fig. 2(b). This properfy o
complementary execution will be preserved throughoutalinds of the DES algorithm. In this way a
total complement of essential information is achieved leetwthe core performing the encryption with
the real key and data with the core acting on the inverted kelyiaverted data.

The attacking point (the place where DPA is performed) in DE®e store ofi;. Therefore having the
same index for the SBOX lookup in both programs will not caasg vulnerability, since complementary
outputs are stored. The following analysis proves thatrétgoic balancing will provide an effective
countermeasure against power analysis side channel dtiadRES. To do this we consider a power
model based on Hamming distance [38], as shown in Equatiavh&re P is the power consumed{
is the Hamming weight functiork is the scalar gain and is the noise termH is given by|Y @ X|,

where X is the previous value in the register aldis the new value after the operation.

P=kH+n (1)

As can be seen from Fig. 2(a) and Fig. 2(t),anda; are complementary, and as such the Hamming
weight of a; and d; will be the number of bits imu;. Likewise, as, a3 etc will be balanced by their
corresponding complemented values as shown in Fig. 2(bgeSthe Hamming weights far; @ a; is
always 48, the attack point is no longer vulnerable, sihcend n are uncorrelated from the sensitive
transitions, and nowH is constant, thus making a constant value. Similar to Brier et al. [38], we

assume that the initial valu&¥ = 0 (such an assumption is valid for any pre-charged logig¢)[22

B. Algorithmic Balancing in AES

Advanced Encryption Standard (AES) is a symmetric-key lblcipher encryption algorithm [10] and
is used in a wide range of embedded applications [1]. In opesments we use the 128-bit AES (AES
with 192 bits and 256 bits are also currently used). Fig. 3ideghe AES algorithm, specifying only
the necessary parts to analyze the attack. A detailed eagidanof AES can be found in [39, 40]. The

128-bit AES is considered for our experiments; others (®2and 256-bit) can be also treated in a
similar way.

As shown in Fig. 3 the 128 bits input data (which is shown asusdp 8 bits blocks — thus input is
divided into blocks numbered from 0 to 15) is xor'ed with th281bits round key (this initial round key
is the actual secret key, and the remaining round keys arergima using a key scheduling algorithm
[1]). The result of the xor between the input and key (which ¥0, Y1, Y2 and Y3) will be used as
indices for the SBOX (FTO, FT1, FT2 and FT3) lookups. Diffardines are used to show which bytes
are combined together for different table lookups. For exaithe lines are fed into blocks FTO from
Y1[0], FT1 from Y2[1], FT2 from Y3[2] and FT3 from YO[3] at orc The output from the SBOXes
are xor'ed together. Separate xor'ed values are then fed¥t Y1, Y2 and Y3. The 128 bits result is
then xor'ed with the next round key. This process will con#rfor several iterations/rounds.

The main part for power analysis is the SBOX lookups. All kgtels have their one and only distinctive
place, which they contribute to one of the SBOX lookups. F@mneple, Key byte KEY[3] only contributes
to the FT3 lookup in a round as shown in Fig. 3. Therefore if dweasary wants to predict KEY[3],
the only place for analysis would be the FT3 lookup.

We present here the algorithmic balancing as applied to AESdtect AES from power analysis. As
shown in Fig. 4(a), the AES encryption has several main fanst a key scheduling process which will
generate subkeyd(,K>,...) for each round from the origin&ey, the AddRoundKeyunction to XOR
the INPUT with the Key, the SubBytedunction for the SBOX lookupsShiftRowsand MixColumnsto
scramble the intermediate bytes. There are four SBOXes insée: SubBytegunction.

Fig. 4(b) and Fig. 4(c) depict two different inversion apgebes (partial and complete) in AES
algorithm. The partial inversion approach is presentea lwanly to emphasize the significance of the
complete inversion. Both inversion approaches have the $a@y scheduling function as shown in Fig. 4.
The inverted keyK ey of the original AES is divided into subkeys and the inversi@performed when
and where necessary to create inverted subkeys (denoteih asround box in Fig. 4 on the right side
segment of both figures). ThEBOXT used in key scheduling is a transposed version (i.e., isdice
swapped) of the original SBOX, so called due to the inverdaevaised for the index. As the partial
inversion in Fig. 4(b) reveals, the inverted inptW PUT is bitwise XORed (the encryption in 128-bit
AES is performed in a A4 byte matrix) with the inverted first subkey,. Since this will produce the
normal output as the original AES (normal output denotedhpshe normal SBOX accesses will be
performed. This will be followed by the norm8hiftRowsandMixColumnoperations. The final function

in the first round Round } is the AddRoundKeyunction which will XOR the intermediate data with

the second inverted subkey,. Hence, an inverted output will be produced (denoted)aafter Round
1. This inverted output is again inverted (the inversion iaated as a round box labelédn Fig. 4(b))
and the normal value of the original AES is sent to the nexhdosimilar process continues till the end
of the AES encryption.

The complete inversion as shown in Fig. 4(c) has the same &lgdslling process of the partial
inversion, but has two main different components in the yotasn process (the changed components are
shaded). Instead of the inverted inpuV PUT, the original inputiNPUT is used. And all the SBOXes
(four SBOXes) inSuTytesT are inverted and transposed of the original. HuelRoundKewperation
for the original inputiNPUT and the inverted subkel{; will produce the inverted output of the original
(denoted asf to specify flipped. SinceSuTytesT is inverted and transposed the inverted indices
coming into the SBOXes will produce the inverted outputs pared to the SBOX outputs in the original
AES. There will be four inverted outputs (each from an SBOX) @he AddRoundKeyperation with
the inverted subkey<, will produce the inverted outputs of the original. This wdthntinue till the end
of the program. These modifications have produced a comiplatesion in terms of data bits throughout
the encryption.

The partial inversion in Fig. 4(b) does not process the tedkidata at the SBOX operations, but
generates inverted outputs after theédRoundkegperation of each round. This has a considerable effect
in balancing (even though it is not completely balanced)eewlly when we look at the implementation
of the AES encryption for each round, which does the XOR wiith subkey first and then the SBOX
accesses. For example, the first 32 bits intermediate r>lt an encryption round is produced (in the
Ccode)ady, =K, @ FT0® FT1® FT2® FT3; whereFT0, FT1, FT2 and FT3 are the four SBOX
lookups. According to this implementation it is visible ththere is balancing in the process, since the
inverted subkey produces inverted intermediate data atieh XOR. However, the SBOXes (which are
the main attack points) are receiving the normal input astiginal and producing normal output. Since
there is pipelining in the processor, there exists a chamaethe balancing in the pipelines obfuscates
the unbalanced SBOX access pipeline stages.

Since the inverted approaches shown in Fig. 4 use certaia &@iping operations (denoted d&s
in round blocks), the original AES program should also hawailar operations with the same set of
instructions to synchronize both programs (i.e., origimadl inverted). Note that balancing is performed
by executing same instructions in parallel but with com@eated data values, which shows that the
synchronization between cores is important. Hence, wetexeaariables for such flipping operations,

assigning all 0’s in the original program and all 1's in thgdrted program. XORing at both instances

10

with that variable will perform the required task.

The attack point (the place where DPA is performed) in AEShis $BOX access, where an 8-bit
intermediate data is loaded and stored into the memory asrsi Fig. 3. The same power model
used for DES (illustrated in Equation 1), is considered tovprthat complete algorithmic balancing
will provide an effective countermeasure against powetyaigside channel attack for AES. The 8-bit
intermediate data in the Original AES (shown in Fig. 4) iserefd to asr and the 8-bit intermediate
data in the complete inversion (shown in Fig. 4(c)) is refdrto asz. For example, the intermediate
dataa andb during FT3 lookup as shown in Fig. 3 will be complementary hoge complete inversion
algorithm (i.e., the transpose and inverted values in FTIBmake b complementary). The values of
andz are complementary, and as such the Hamming weights betweaedz will be the number of bits
in z. Since the Hamming weight for & 7 is always 8, the attack point is no longer vulneraldeand
n are constants, and sind€ is constant,P is a constant value. If the attack also considers the power
consumption caused by the bitflips in the bus during load dok sthe power model is added with an
additional componentH, as explained in [28]. The modified power model is presenteHdoation 2,

wherer is the scalar gain and/, is the Hamming weight in the bus during load or store.

P=FkH+rHy,+n (2)

Since the complete balancing uses complementary index etridving complementary outputs from
the SBOX (as shown in Fig. 4), the resulting Hamming weightis also constant. Hence, the power

consumptionP is still maintained at a constant value.

IV. MULTIPROCESSORBALANCING ARCHITECTURES

The multiprocessor balancing architectures for both DE& ABS are presented in this section.

A. Base Architecture

Fig. 5 depicts the schematic diagram of the base dual coeepsor used in our design. As depicted,

the processor has two identical cores with separate irigiruand data memories for each core.

B. Balancing Control

In our implementation we use a flag register to indicate therygaion program execution and to start

the balancing. This flag register can be set in one of threesw@y using the operating system when

11

scheduling the encryption program to the core; (ii), détecthe memory location accesses where the
data and key for the encryption are stored; or (iii), usingoactal instruction to set the flag register.

Termination of balancing, by clearing the flag register, barperformed in a similar fashion by using the

operating system which can clear the flag register when thedsded encryption program is completed;

or by inserting a special instruction in the source code éarcthe flag.

For our experiments, balancing is triggered and terminddgdwo special instructions which are
instrumented in the source code (i.e., the fistytBal and the laststopBal instructions of the encryption
programA as shown in Fig. 6).

The execution of thetartBalinstruction indicates to the CONTROLLER that an encrypfoogram is
scheduled in the core. An External Interrupt is raised in EQRThis is a maskable interrupt which will
trigger after all the pipelines are flushed. Necessary tegigRegisterfile, LO, HI and Program Counter)
of CORE2 are saved in the stack as shown in Fig. 6. After thistexg are saved, the CONTROLLER
sends the program counter (PC) values to CORE1 and CORE2easathe clock cycle (i.e., PC values
of Encrypt in program4 and A). Both the original and complementary programs are exeldatearallel
by CORE1 and COREZ2 respectively. When encryption is finisktieglendBalinstruction in programA
will be executed by CORE1, which will send a signal to the CGXJLLER indicating the completion
of encryption. The CONTROLLER restores the saved regidters the stack. CORE2 will resume its

execution and the next available program will be schedulre€OREL1.

C. Switching and Interrupts

An External Interrupt is supplied by the CONTROLLER to onelad cores to service an interrupt while
the balancing is in progress. This interrupt is servicedrafie pipelines are flushed, thus the registers are
updated with the correct values. Each interrupt routing. (@rogrampB) will have three code segments:
one, backupRegto save the registers into the stack; twestoreRegto restore the registers from the
stack; and threegndintr, to end the interrupt. Thendintr instruction sends a Non-maskable Interrupt
(NMI) to the CONTROLLER as shown in Fig. 6. An NMI request wifirce the controller to change
the PC of both cores to their original locations to resumetehg. This is done at the same clock
cycle inorder to preserve synchronization. When a COREivesean interrupt during balancing, the
other CORE is put on hold till the interrupt is serviced. Hoee the other CORE can be also allowed
to execute the next program in the queue, but with carefulification in the controller to maintain
synchronization for balancing. Table | lists the additioresources used for balancing. The Program

Counter (PC) is saved intBC_backupat the fetch stage of thexternalinterrupt and saved in the stack

12

at the memory stage. Thawitchregister is set and cleared by th&rtBal and endBalinstructions.

| Resources | Names \
Instructions| startBal, endBal, endintr
Interrupts | external (masked), NMI
Registers | PC.backup, switch

TABLE |
ADDITIONAL RESOURCES FORBALANCING

The interrupts from one core to another can be also handledpleyating systems using software

interrupts [41, 42].

D. The Multiprocessor Balancing Frameworks

Fig. 7 presents the multiprocessor frameworks for DES €dallUTE-DES, and for AES (called
MUTE-AES. In bothMUTE-DESandMUTE-AES the second core (CORE2) executes the same program
as the first (COREL), in parallel, but with the complementdgprithms as explained in Section Il (when
not encrypting, both cores run independently and execdfereint programs). Two separate instruction
memories and data memories are used for CORE1 and COREMUA&-DESuses the inverted key
(K') and inverted datalf’) in its Data Memory 2 compared to its Data Memory 1, which uthes
original key (K) and original data D) as shown in Fig. 7(a). ThMMUTE-AESuses the inverted key,
original data and the modified SBOXes (explained in SectibB)l in Data Memory 2 compared to its
Data Memory 1 as shown in Fig. 7(b).

Each core fetches instructions from its correspondingtiction memory. The balanced DES and AES
programs are stored in a part of COREZ2’s Instruction Memdhe CONTROLLER handles switching
and interrupts for balancing as explained above. Note Heataches are disabled during balancing, since
having a cache will not allow the synchronizing of cores. Buhis results in excessive performance

penalties, a scratchpad memory could be used for the emmmyptogram.

V. EXPERIMENTAL SETUP

The hardware design that was used for the multiprocessanbialg architecturesMUTE-DESand
MUTE-AES is shown in Fig. 8. The Instruction Set Architecture (ISA)¥ed into an automatic processor
design tool called ASIPMeister[43]) and two identical cores (CORE1 and CORE2) are genarate
create bothrMUTE-DESand MUTE-AESseparately.

13

As Fig. 8 depictsMUTE-DESand MUTE-AESarchitectures are designed by combining CORE1 and
CORE2 with the requisite flags. The balancing multiprocefsmeworks are implemented in a processor
with the PISA (Portable Instruction Set Architecture) rostion set (as implemented in SimpleScalar
tool set with a six stage pipeline) processor without cadtig. 9 depicts the process of performing
power analysis on two different processors; Normal DuakBssor and MUTE processor (i.8UTE-
DESor MUTE-AES. The Normal Dual Processor is used as a base processorrfgracison. The DES
program in C is compiled using GNU/GCC cross compiler for BABA instruction set, which produces
the binaries.

Synopsys Design Compiler is used to synthesize both processdels, which are simulated together
with the program binary in the ModelSim hardware simulatogénerate the stimulus wave with switching
information. The execution trace is verified using Modelsind extracted for future use. Primepower is
used to measure the power values in waltts).(As shown in Fig. 9, the addresdddr) and instruction
opcode Pata) of instruction memory {mem) are extracted from the execution trace. Perl scripts are
used to reannotate the power values to the execution tra® iDimplemented in a separate C program,

and the execution of that C program extracts the necessstryiation power values from the trace.

VI. RESULTS

This section illustrates the results fMUTE-DESand MUTE-AESmultiprocessor balancing frame-
works, separately. Each architecture is presented wittDR#&, hardware summary and performance

analysis.

A. Results for MUTE-DES

1) DPA in MUTE-DES:We performed DPA experiments (based on [2] and [11]) on thenabdual-
core architecture anfUTE-DESprocessor, by executing the DES cryptographic program aatyzing
each SBOX lookup in each round. Two commonly used selectioctions are either based on SBOX
output bits, or based on the selection bits to the SBOX. SiheeDPA, based on the SBOX output bit
[11] did not reveal the key in our experiments, we presentlte®f DPA based on selection bits to the
SBOX [2]. This DPA follows the method proposed by Messerdges.g5], which predicts the secret key
by inspecting all possible SBOX lookups in each round.

The X axis of the displayed DPA plots give all possible key valuesnf O to 255 (the first eight bits
of a DES encryption key), which is plotted against the DPAueal Vatt9 in the Y axis for each key
guess. The attacking point is the store instruction jusrafie SBOX lookup, where the SBOX output

14

is XORed with the inverted data and stored (as explained uti@elll). Fig. 10 shows a DPA trace
performed on a normal dual-core processor, where one coegeisuting the DES program while the
other remains idle.

Predicting the correct key corresponds to the significaakpe the DPA trace. In this example (shown
in Fig. 10) the significant peak happens at a key value of 104 @Bs performed on the third selection
bit, for the third sbox lookup, in the last round of encryptidNote that another significant peak also
appears for the key 233, which is slightly lower than the patk0. Reasons for such ghost peaks are
given in [7].

Concealment of information in our proposed architecturre loa achieved when both data and key are
inverted. Fig. 11 is produced when the balancing core useitterted secret key and the inverted data
of the first core (DPA on the third selection bit, for the th&fox lookup, in the last round of encryption).
As shown in Fig. 11, DPA cannot reveal the secret key inNtTE-DESarchitecture, where the correct
key (value of 10) does not produce a significant peak. The Dédes are much less fdGdUTE-DESas
shown in Fig. 11, compared to the single core DPA values shinviaig. 10. This is due to the balancing
of the information in processing ‘1’s and ‘O’s.

To demonstrate the security of our method we compare exssutf the encryption algorithm with
two different inputs (these were randomly chosen) and aobthe two “clock cycle accurate” power
traces. The only information available to the attacker ceritem the differences between the power
traces for different data inputs chosen. Thus, for an attattk be able to extract any usable information
about the key from the power traces, the power traces foereifit inputs must be distinguishable.

We used Fast Fourier Transform (FFT) analysis to examinespleetrum available. Our experiments
show that the difference when balancing is used (shown in Ei¢b)), is an order of magnitude lower
than the difference when the program is running on a singte ¢shown in Fig. 12(a)), and that the
frequency spectrum of the difference has far less infomnagshown in Fig. 12(d)), unlike the spectrum
of the difference for a single core (shown in Fig. 12(c)) whaxhibits many well defined peaks.

Similarly, using the same input data but with two differeeyg, two clock cycle accurate power traces
are obtained. One power trace is subtracted from the otltethenobtained result is much smaller for the
MUTE-DESarchitecture when compared to the result from the single.ocOnce again we see a much
lower amount of variation in the FFT output. For an attackeextract any usable information from the
power trace about the key, the power trace and the key valst Inawe a non negligible correlation. The
difference of power traces for different keys must be abtneertoise threshold for a successful attack.

Thus, the magnitude of the difference and its spectrum atdithat little information above noise level

15

is present in the power trace, regardless of what data orskeged.

To get a better appreciation for the hiding ability of our hust, we also ran an experiment which was
not perfectly balanced, by complementing only the key, aodthe data. The DPA graph is presented
on Fig. 13(a), and it clearly shows that the peak that comegdg to the right guess is much lower on
MUTE-DES However, when we find the differences of the power traceswordifferent keys as shown
in Fig. 13(b)[1], and examine its spectrum (shown in Fig.n)[A]), we still see several well defined
peaks, leaving the possibility that there might be some lasalormation. This shows that both the key
and the data must be inverted to preclude the presence oftemnker usable information in the power
trace.

Fig. 14 shows a general picture of the variation of DPA plotsd single core in the standard dual-core
processor and for a processing system based oMtWE€E-DESarchitecture upon the selection bits, for
the third sbox lookup in the last round of DES encryption @thivas shown to be vulnerable previously).
The six plots in each category (each row) is based on the &xtimn bits (left to right plots start from
the most significant bit to least significant bit). First roivFdg. 14 displays the DPA variation in a single
core, while the second row depicts the DPA variation whemgishe inverted key and inverted data
(invKeyinvData) inMUTE-DES

From the variations shown in Fig. 14(a), the DPA when DES Isedaled on one core, produces higher
values when compared dUTE-DES MUTE-DESdisplays a flattened variation (values close to zero)
shown in Fig. 14(b). This flattening is due to the balancedlipis.

Note that the DPA based on the SBOX output bit [11] showedlaimrariations, where the DPA values
are flattened after balancing.

2) Hardware Summary for MUTE-DESFable Il shows the hardware details of tNUTE architec-
ture, generated by Synopsys Design Compiler. Mi¢TE-DESarchitecture consumes little additional
hardware (around 0.1%) compared to the standard dual moicas shown in Table II. The clock period

is slightly increased foMUTE-DES because of the switching and synchronizing of the cores.

| | Normal Dual Processor | MUTE-DES |

Area (cell) 221842 222242
Clock (ns) 41.63 49.61

TABLE Il
HARDWARE SUMMARY

16

3) Performance Overhead in MUTE-DEShe performance overhead caused when the second core
is switched for balancing is tabulated in Table Ill. The nat®ES program costs 76,350 clock cycles

including memory accesses.

| | Clock Cycles |
Basic DES 76,350
Delay
Save Registerfile 320
Save Registers,PC 40
Flush Pipelines 6
Interrupt to switch 1
Exit the interrupt 1
Restore registerfile 320
Restore Registers,PC 40
Total Delay 728
| Performance Overheadl 0.94% |
TABLE Il
PERFORMANCEOVERHEAD

As shown in Table lll, every time balancing is performed,réhis a delay of 728 clock cycles, which
includes saving and restoring necessary registers, gettid clearing the flag for switching, and memory
accesses. This delay comprises of only 0.94% percent ofutm@nre. Note that this overhead does not
include any delay in software interrupts, which might ocuainile the system is encrypting. While the
balancing is being performed, the second core will not baglds usual tasks. Hence, the whole system

will have a further delay of 76,350 cycles in the worst casenacio.

B. Results for MUTE-AES

1) Differential Power Analysis (DPA)We performed the Differential Power Analysis (DPA) on AES
to predict the correct 8 bits of the secret key based on thaitefis from [2, 11], where the first output
bit from the forth SBOX in first round is used for partitioninghe attack point for power measurement
is the load instruction from the SBOX. All the DPA plots here @rawn for the DPA bias values (Y axis
in watt9 versus the possible 256 key values (i.e., 0 to 255 for 8.b&s§tandard dual-core processor,
executing AES on one core and keeping the other core idldhgwitany countermeasure), is attacked
to determine the scenario of the attack and also as a baseKigsdl5 depicts the DPA plots for a

single core (in a dual-core processor), where the top platitescked at the load (LW) instruction, the

17

bottom left at the XOR instruction and the bottom right pletng the average of the power consumption
during the SBOX access (i.e., average of the power magrstatieting from load till the store after the
SBOX lookup). In all three cases shown in Fig. 15 the correst fvalue of 14) is clearly identified by
a significant peak, thus successfully passing the attackthggis.

To justify the necessity of the complete inversion algarittor the countermeasure, the partial inversion
explained in Section llI-B is attacked using DPA. As Fig. 1€pitts, the correct key is still predicted
using the load (LW) instruction and the XOR instruction, tbof which reveal a significant peak. This
experiment shows that the balancing effect caused by dpesabther than the SBOX accesses cannot
mask the key. Hence, the SBOX accesses play an importanirrakevealing the key, and has to be
balanced completely.

Fig. 17 presents the DPA plots for the completely balancedgssor architecture which is explained
in Section 11I-B. As the plots reveal, the DPA signals at tioerect key guess (value 14) failed to produce
significant peaks for all the three cases (i.e., load intrucXOR instruction and average during SBOX
access). The DPA bias values are much smaller and have aesmatiation when compared to the
values observed for the single core, especially at the la¥d) (nstruction (which is the main attack
point exploited by previous researchers [11]).

Comparisons similar to that of DES (explained in SectionA/1) are performed to demonstrate the
security of our method ilMUTE-AESby subtracting two “clock cycle accurate” power traces fopt
different inputs. We used Fast Fourier Transform (FFT) wsialto examine the spectrum available. Our
experiments show that the difference when balancing is (sealvn in Fig. 18(c)), is much lower with
more zeroes than the difference for an AES execution schdduh one core of the processor (shown
in Fig. 18(a)), and that the frequency spectrum of the difiee looks much like white noise (shown in
Fig. 18(d)), unlike the spectrum of the difference for thgioal AES (shown in Fig. 18(b)) that exhibits
many well defined peaks.

The magnitude of the difference and its spectrum indicaé tlo information above noise level is
present in the power trace, regardless of what the used datayoThis also proves that our balancing
techniqgue MUTE-AES prevents the system from Simple Power Analysis (SPA). SMGUTE-AES
balances the intermediate data throughout the AES algor{ite., Hamming weight of the processed
data is always balanced) there won'’t be any correlation déetwHamming weight and power magnitude.

2) Hardware Summary for MUTE-AES: MUTE-AEB%o0 has the same hardware detailsMifTE-
DESas shown in Table I, since the same flag registers and coeessad. Note that the only difference

is the memory setup betwedhUTE-DESand MUTE-AESas shown in Fig. 7.

18

3) Performance Overhead in MUTE-AEShe performance overhead caused, when the second core
is switched for balancing, is tabulated in Table IV. Normdt®\ program costs 175,600 clock cycles

including memory accesses.

\ | Clock Cycles |
Basic AES 175600
Delay

Save Registerfile 320
Save Registers,PC 40
Flush Pipelines 6
Set start flag 1
Clear start flag 1
Restore registerfile 320
Restore Registers,PC 40
Total Delay 728
| Performance Overheadl 0.42 %|
TABLE IV
PERFORMANCEOVERHEAD

As shown in Table 1V, every time balancing is performed, ¢hisra delay of 728 clock cycles, which
includes saving and restoring necessary registers, gettid clearing the flag for switching and memory
accesses. This delay costs 0.42% percentage in additiontine. This overhead does not include any
delay in software interrupts which might occur while the teys is encrypting. A further latency of
175,600 clock cycles will be added to the whole processimg tin the worst case. This is because that

the second core has to pause its normal processing wherclrgjan

VIl. DISCUSSION

In our approach, the primary core executes the cryptogcaphbgram (the second one runs the
complementary version), which is enhanced with additidlzg registers. But in practice, the operating
system can decide upon the task scheduling of processasfdrating system can force an application
to run on a particular core [44], thus always scheduling ttyptographic program to the primary core.
If we allow the OS to schedule the cryptographic program tbegicore, then additional flag registers
have to be attached to all the cores, to enable such a uriexseution.

Similar algorithmic level balancing can be performed usag/LIW processor, where a normal
instruction and a complementary instruction can be induidea word [45]. But in such cases a VLIW

processor will not be able to execute any other program wiheryption is not being performed.

19

Since balancing is performed by a specific core all the tinygowaerful magnetic probe can be placed
on top of the chip to observe the electromagnetic (EM) da#yp of only one of the cores, which is
executing the correct program. There is a high probabitigt the correct key can be exposed from these
measurements. To prevent this scenario, the place andabbtih cores can be performed together with
both cores overlaid on top of each other, without a clearitmartbetween the two.

Such on overlaid place and route also prevents one of the bangng a greater power footprint (due to
physical variations in the wafer) than the other. If one &f tlores did have a greater power footprint, then
the encryption key can be extracted by side-channel asalsiwever, with an overlaid place and route,
individual bits in registers can exhibit greater power pgegfbut such things will be random amongst the
two cores and will not remove the balancing ability of the MEJ@rchitecture.

Another consideration is if one core encrypts while the offe¥forms normal computation, then there
might be sufficient hiding from the noise of the second corilitg the actual behavior in the power
profile by the second core is difficult. Millions of sample&da will statistically average out the noise,
which once subtracted will then reveal the encryption kegnée, MUTE guarantees hiding all of the
time and does not allow any leakage of secure informatiomtadversary.

We assume that the instructions are stored in an non-weitéild., only readable) ROM. Hence, an
attacker can not modify the sensitive contol registers &edsignals. However, we should point out that
physical attack on the memory is still possible but seveolitions exist to prevent physical attacks
(which is not our scope). Storing such critical informatiomo a ROM costs in hardware area. All the
cryptographic techniques have this memory overhead (odeaked ROM to store the key and the code)
and hence we did not consider it as an extra overhead.

In this work, we managed to attack the secret key only at th@XSButput in AES and at the SBOX
input in DES. None of the other places in DES or AES produceimifcant peak in the DPA signal.
Hence, we demonstrated the balancing technique, considerily these attacking places. However, it
is worth to note that the balancing algorithm would be ddfdrif the attack place is different. Our aim
is to prove that the algorithmic multiprocessor balanciag be used to prevent power analysis attacks

and its up to the designer to deploy this technique based eattacking point observed.

VIIl. CONCLUSIONS

This paper proposes a Multiprocessor Balancing Technigpedvent side channel attacks for the most
common block ciphers, DES and AES. The second core in a dualygrocessor is used to mask the

effects caused by the secret key from the first core, by runtlie complementary program in parallel

20

to the first core.

The balancing is only performed when necessary. The santeoo@bgy can be applied with minimal
changes to any encryption programs which operate in a “ls&tmanner, by either permuting or flipping
bits independently. Similar methods can also be developatbh-bit-wise methods such as RSA, but
are harder to implement and, while significantly safer than-halanced single processor methods, do

not result in perfect balancing. Our future work will invigstte on such balancing approaches.

REFERENCES

[1] S. Mangard, “A Simple Power-Analysis (SPA) Attack on llmmentations of the AES Key Expansion,” information
Security and Cryptology - ICISC 2002, 5th International @&wance Seoul, Korea, November 28-29, 2002, Revised Rapers
ser. Lecture Notes in Computer Science, P. J. Lee and C. H, Eds., vol. 2587. Springer, 2003, pp. 343-358.

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Arsis,” Lecture Notes in Computer Scieneel. 1666, pp. 388-397,
1999.

[3] D. Brumley and D. Boneh, “Remote timing attacks are pcaif’ in Proceedings of the 12th USENIX Security Symposium
August 2003.

[4] J. Quisquater and D. Samyde, “ElectroMagnetic Analy&i®A): Measures and Counter-Measures for Smart Cards.” in
E-smart 2001, pp. 200-210.

[5] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Exangirimart-card security under the threat of power analysis
attacks.”IEEE Trans. Computers/ol. 51, no. 5, pp. 541-552, 2002.

[6] S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Peavealysis attack on an asic aes implementatidng, vol. 02,

p. 546, 2004.

[7] E. Brier, C. Clavier, and F. Olivier, “Correlation powanalysis with a leakage model.” @HES 2004, pp. 16-29.

[8] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Invesiims of power analysis attacks on smartcardsfM@ST'99:
Proceedings of the USENIX Workshop on Smartcard Technolod@ySENIX Workshop on Smartcard Technolo@erkeley,

CA, USA: USENIX Association, 1999, pp. 17-17.

[9] G. Hollestelle, W. Burgers, and J. |. den Hartog, “Poweralgsis on smartcard algorithms using simulation,”
http://eprints.eemcs.utwente.nl/798/, Eindhoven Uit of Technology, Eindhoven, Technical report CSR 04-2204.

[10] National Institute of Standards and Technologgvanced Encryption Standard (AE2P01, supersedes FIPS PUB 197—
2001 November.

[11] C. Gebotys, “A Table Masking Countermeasure for LoweEyy Secure Embedded System&EE Transactions on Very
Large Scale Integration (VLSI) Systemsl. 14, no. 7, pp. 740-753, 2006.

[12] E. Oswald, S. Mangard, C. Herbst, and S. Tillich, “Piealt Second-Order DPA Attacks for Masked Smart Card
Implementations of Block Ciphers,” ifopics in Cryptology - CT-RSA 2006, The Cryptographers’'ckrat the RSA
Conference 2006, San Jose, CA, USA, February 13-17, 20Q@&;ePdings ser. Lecture Notes in Computer Science,
D. Pointcheval, Ed., vol. 3860. Springer, 2006, pp. 192--207

[13] E. Peeters, F.-X. Standaert, N. Donckers, and J.-Jkddaier, “Improved Higher-Order Side-Channel Attack$hvAPGA
Experiments.” inCHES 2005, pp. 309-323.

[14] “Chip multi processor watch,” 2007, available at: httyiew.eecs.berkeley.edu/wiki/Chidulti_Processaiatch.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

21

M. Nikitovic and M. Brorsson, “An adaptive chip-multipcessor architecture for future mobile terminals, JASES '02:
Proceedings of the 2002 international conference on Carmilarchitecture, and synthesis for embedded systehiew
York, NY, USA: ACM Press, 2002, pp. 43-49.

W. Wolf, “Multimedia applications of multiprocessoystems-on-chips,” irDATE '05: Proceedings of the conference on
Design, Automation and Test in EuropeWashington, DC, USA: IEEE Computer Society, 2005, pp. 8-8

D. Hwang, K. Tiri, A. Hodjat, B.-C. Lai, S. Yang, P. Schaont, and |. Verbauwhede, “Aes-Based Security Coprocessor
IC in 0.18um CMOS With Resistance to Differential Power Arsid Side-Channel Attacks|EEE Journal of Solid-State
Circuits, vol. 41, no. 4, pp. 781- 792, 2006.

D. D. Hwang, P. Schaumont, K. Tiri, and I. Verbauwhed8gturing embedded system#EE Security and Privagy
vol. 4, no. 2, pp. 40-49, 2006.

H. Saputra, N. Vijaykrishnan, M. Kandemir, M. J. IrwiR, Brooks, S. Kim, and W. Zhang, “Masking the energy behavior
of des encryption,date vol. 01, p. 10084, 2003.

S. Danil, M. Julian, B. Alexander, and Y. Alex, “Desigmaanalysis of dual-rail circuits for security applicatighlEEE
Trans. Comput.vol. 54, no. 4, pp. 449-460, 2005.

K. Tiri and |. Verbauwhede, “A Logic Level Design Methodgy for a Secure DPA Resistant ASIC or FPGA
Implementation,” inDATE '04: Proceedings of the conference on Design, autamnagind test in Europe Washington,
DC, USA: IEEE Computer Society, 2004, p. 10246.

——, “A Digital Design Flow for Secure Integrated Cir¢si’ IEEE Trans. on CAD of Integrated Circuits and Systems
vol. 25, no. 7, pp. 1197-1208, 2006.

J.-S. Coron and L. Goubin, “On Boolean and Arithmetic diiag against Differential Power Analysis,” i@hes '0Q
London, UK, 2000, pp. 231-237.

E. Trichina, D. D. Seta, and L. Germani, “Simplified Adigp Multiplicative Masking for AES,” inCHES '02: Revised
Papers from the 4th International Workshop on CryptograpHardware and Embedded Systemisondon, UK: Springer-
Verlag, 2003, pp. 187-197.

R. Muresan and C. H. Gebotys, “Current flattening inwafe and hardware for security applications."GODES+ISSS
2004, pp. 218-223.

G. B. Ratanpal, R. D. Williams, and T. N. Blalock, “An GBhip Signal Suppression Countermeasure to Power Analysis
Attacks,” IEEE Transactions on Dependable and Secure Computiolg 01, no. 3, pp. 179-189, 2004.

D. May, H. L. Muller, and N. P. Smart, “Non-deterministProcessors,” ilCISP '01: Proceedings of the 6th Australasian
Conference on Information Security and Privacy.ondon, UK: Springer-Verlag, 2001, pp. 115-129.

M.-L. Akkar, R. Bevan, P. Dischamp, and D. Moyart, “Powanalysis, what is now possible...” iASIACRYPT '00:
Proceedings of the 6th International Conference on the fhaad Application of Cryptology and Information Security
London, UK: Springer-Verlag, 2000, pp. 489-502.

M. Barbosa and D. Page, “On the Automatic Constructibindistinguishable Operations,” i@ryptography And Coding
Springer-Verlag LNCS 3796, November 2005, pp. 233—-247.

C. H. Gebotys and R. J. Gebotys, “Secure Elliptic Cumplementations: An Analysis of Resistance to Power-Atack
in a DSP Processor,” IGHES '02: Revised Papers from the 4th International Worksbo Cryptographic Hardware and
Embedded SystemsLondon, UK: Springer-Verlag, 2003, pp. 114-128.

J. A. Ambrose, R. G. Ragel, and S. Parameswaran, “RIBi@&nhdom Code Injection to Mask Power Analysis based Side
Channel Attacks,” irDAC, 2007, pp. 489-492.

[32]

[33]

[34]
[35]
[36]

[37]
[38]
[39]
[40]

[41]
[42]

[43]

[44]

[45]

[46]

22

——, “A Smart Random Code Injection to Mask Power AnadySlased Side Channel Attacks,” ®@ODES+ISSS '07:
Proceedings of the 5th international conference on Hardsoftware codesign and system synthesidew York, NY,
USA: ACM Press, 2007, pp. 51-56.

T. Popp and S. Mangard, “Masked Dual-Rail Pre-Charggit:o DPA-Resistance without Routing Constraints,” in
Cryptographic Hardware and Embedded Systems — CHES 2003ntérnational Workshop, Edinburgh, Scotland, August
29 - September 1, 2005, Proceedingsr. Lecture Notes in Computer Science, J. R. Rao and B.rSHda., vol. 3659.
Springer, 2005, pp. 172-186.

M. Joye, P. Paillier, and B. Schoenmakers, “On SecondkODifferential Power Analysis.” i€HES 2005, pp. 293-308.
J. Waddle and D. Wagner, “Towards efficient second-opever analysis.” ifCHES 2004, pp. 1-15.

C. Clavier, J.-S. Coron, and N. Dabbous, “DifferentRdwer Analysis in the Presence of Hardware Countermegsures

in CHES '00: Proceedings of the Second International WorksbopCryptographic Hardware and Embedded Systems
London, UK: Springer-Verlag, 2000, pp. 252-263.
Computer Systems Laboratory (U.SData Encryption Standard (DES)1994, category: computer security, subcategory:
cryptography. Supersedes FIPS PUB 46-1-1988 January 2¥irRed December 30, 1993. Shipping list no.: 94-0171-P.
E. Brier, C. Clavier, and F. Olivier, “Optimal Statistil Power Analysis,” 2003, cryptology ePrint Archive, Re®003/152.
J. Daemen and V. RijmefThe Design of Rijndael: AES - The Advanced Encryption Stand&Springer-Verlag, 2002.
W. Stallings, “The advanced encryption standa@ryptologia vol. XXVI, no. 3, pp. 165-188, 2002.

M. T. DiBrino, “Apparatus and method for managing imtests in a multiprocessor system).S. Patent 52652151993.
T. Samuelsson, M. Akerholm, P. Nygren, J. Starner, Bntlindh, “A comparison of multiprocessor real-time opéngt
systems implemented in hardware and software,Initernational Workshop on Advanced Real-Time Operatingtesy
Services (ARTOSS2003.

“The PEAS Team. ASIP Meister,” 2002, available at: Hftpww.asip-solutions.com/english/.

“Technology@Intel Magazine,” 2007, available at: phattwww.intel.com/technology/magazine/computing/&or
programming-0606.htm.

J. Daemen and V. Rijmen, “Resistance against impleatiemt attacks: a comparative study of the AES proposal€99.19
URL: http://csrc.nist.gov/CryptoToolkit/aes/rounddigmnts.htm.

S. Shimizu, H. Ishikawa, A. Satoh, and T. Aihara, “Omvand design service innovation$BM J. Res. Dey.vol. 48, no.
5/6, pp. 751765, 2004.

Power I
Traces

Bit=0] Seto |

Bit ?

Keys Bit =1
L J
Fig. 1. An overview of DPA
Secret Key K| K1 | K2 | 0oo | K16| InvenedSecretKeyK| E | KZ | tre |KI6|

First Round Second Round Final Round First Round Second Round Final Round

OrigInaI Subkey

K, K

Inverted Subkey

=]
Agx

i B | I BN |
it N|| o _ -+ N
X v|[|u [x v
(S T N /sH
1B P P P | B! P
10! E U u 10! E
(x| R T T (x| R
¥ M > M
(v /
a1 _/a a \ N2/
Non-inverted oquut
(a) Original DES Algorithm (b) Complementary DES Algorithm

Fig. 2. Algorithmic Balancing in DES

weut [0 J[1 (2 J[3)[4 (s J[s J[7 J{ 8][e J[ro][11][12][13][14][15]

PP PERPPPBEPPREDPDDP
kev [0)[4 (2= (4 (s (e (7 J(e (e J{ro][t][12][13][14][15]

CT T T T 0T T JCT % T e
—= /V = - 5""' —
SBOX FTO i FT1 | FT3
® S b
I I I
L Ty [T v [T [v [J[[¥ []
PPPEPPPPPEPREPRPDPD PP
S N N N I/
LT Yo T T v T T ve [L[¥ [=

Fig. 3. AES Algorithm

“—co-Hco|

AR i
s)'(s e 8 320 324 321 32 s)(s .. Is 32} 320 32F 32 a)(s)'(. ./l/g 32,0 32,0 324 32
_ f _
’ AddRoundKey ‘ Kj n l AddRoundKey ‘ K l AddRoundKey ‘ Kj
;ri"l‘ 7777 l’*‘ Reon| }tli» 77777 l”‘ ¥ Reon 1 ii’ ””” l’*‘ Rcon
g SubBytes } e ° } SubBytes | <<8 g } SubBytes' } @
0 3 !
© ShiftRows ! & i | 2! i !
! | | seox 9({9 ({9 ({9 | shiftRows | | fasYanWanttan | shiftRows | | D E; Byrasy
} MixColumns | | MixColumns } JC;{CJCD } MixColumns } JCD @@
I I | I
} } f 1| AddRoundKey | IK; f } AddRoundKey | IK;
L R I P —_|
0
L

v Y v
Ciphertext

(a) Original AES Algorithm

Fig. 4. AES Algorithmic Balancing (images

R

(b) Partial Inversion

influenced by [46]

-

1
" 4

Ciphertext

(c) Complete Inversion

CPU
clock — — clock
dmab dmab|
Data | | - R Data
Memory CORE1 CORE2 Memory
1 2
reset - dmdf [y - reset
imab i i imdb imab i i imdb

clock

Fig. 5. The Base Dual Core Processor with

(Instruction Memory 2)

reset clock

Memory Modules

I
reset

Registerfile,

PC, HI, LO

Non-| le

i Interrupt

CONTROLLER

External

startBal A
Encrypt:

endEncrypt:
endBal

Original
Program

Fig. 6. Switching and Synchronizing

Interrupt

CORE1

endEncrypt:

CORE2

Complementary
Program

Interrupt
Routine

24

Data
Memory

Key K
Data D

reset —|

Fig. 7.

clock

imdb imab ! 1 imdb

CcPU B

A CONTROLLER |
CORE1 CORE2

G J

(a) MUTE-DES

Fig. 8. Hardware Design

Synthesized
Processor
Model

Data
Memory

Key K’
Data D’

Multiprocessor Balancing Architectures

|-clock

|-reset

ASIP Meister

reset —|

Data
Memory

Key K
Data D
SBOX

imdb
CPU
A CONTROLLER
CORE1 CORE2

(b) MUTE-AES

Normal
Dual Proc.

Modelsim

Simulator

\

Execution

Traces

Generated

Waves

PrimePower

Power
Analysis

Fig. 9. Experimental Setup

9.00E-06

8.00E-06

7.00E-06

6.00E-06

5.00E-06

4.00E-06

3.00E-06

2.00E-06

1.00E-06

0.00E+00

~—— Correct Key 10

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 25¢

Fig. 10. DPA on a normal dual-core processor

Data
Memory

Key K’
Data D
SBOX’

25

|-clock

|-reset

3.50E-06

3.00E-06

Correct Key 10

2.50E-06

2.00E-06

1.50E-06

1.00E-06

5.00E-07

0.00E+00
1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254

Fig. 11. DPA on MUTE-DES with inverted Key and inverted Data

-4
5X10 0.01
0.005
0 0
0 1000 2000 3000 0 1000 2000
_ga) Single Core ((5)4FFT: Single Core

X 10 4X 10

1WWWWWW 2

00 1000 2000 3000 OO 1000 2000

(b) MUTE-DES (d) FFT: MUTE-DES
Fig. 12. Difference between power samples: FFT
4.50E-06
4.00E-08 4x 10-5 T T T T
3.50E-06
P 1
3.00E-06
2s0c00 | COTFECt Key 10 0 ilnllnmllllliliili T T R
0 500 1000 500 2000 2500
2.00E-06 107 [1] invKey
1.50E-06
1.00E-06 1
5.00E-07
0.00E+00 0O 500 1000 1500 2000
1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 25: [2] FFT: invKey
(a) DPA on MUTE-DES (b) Power Difference

Fig. 13. Inverted Key and Original Data

x107 x10° x107 x107 x10° x10°
1 1 1 1 1 1
05 WWMO.S W“WWO.S WWMO.S kit 5 WMW.S e
0 0 0 0 0 0
0 100200 O 100200 O 100200 O 100200 O 100200 O 100 200
(a) Single Core
x10° x10° x10° x107° x107° x10°
1 1 1 1 1 1
0 bamiodianbll | bl 0 N | 0
0 100200 0 100200 O 100200 O 100200 O 100200 O 100 200
(b) MUTE-DES: invKeyinvData
Fig. 14. DPA plots & Selection Bits
0.0014
0.0012
0.001
'g‘ 0.0008 -
g 0.0006 -
&
0.0004
00002 11 |‘\ | i ‘\h | | |
o
Key Guess
(@) @ LW
i ©0.0003 i
H g o002
00001 00001 [| [L ‘ |

Fig. 15.

Fig. 16.

(b) @ XOR (c) Using Mean

DPA plots on a single core in a standard dual-corequ®sor: No Balancing

[a——

§

(Wl K
Gl AR A R AL L

(b) @ XOR

a - |

(@ @ LW

DPA plots for Partial Balancing

27

0.0005

0.0004 1

0.0003 A1

0.0002

DPA values (Watts)

0.0001

M

DPAvalues (Wats)
]

vooos N

o

Fig. 17.

(c) Using Mean

—————————— ~
Key Guess
(a @ LW
gooooa
|
' 5 oooox Ll
Lid by I ||I| , ‘ | |l |
00001 LBl
TERILBERBEC-YBIBEEBEIFYIEE
oy e
(b) @ XOR
DPA plots for Complete Balancing: MUTE-AES
x10~ x10°
3.5]
15 3]
w
a 2.5]
Uy 2)
t
s 15
0.5 1
0.5]
A A M . A\
] 50 100 150 200 250 300 [50 100 150 200 250
Clock Cycles.
(a) Original AES (b) FFT: Original AES
x10° x10°
3.5]
1.5 3]
w
a 2.5]
t
t 1] 2]
s 1.5]
0.5] 1
j A 0s
1 f .
] 50 100 150 200 250 300 [50 100 150 200 250

Fig. 18. FFT Analysis

Clock Cycles
(c) Balanced AES

(d) FFT: Balanced AES

28

